
SoC Blockset™
Reference

R2021a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

SoC Blockset™ Reference
© COPYRIGHT 2019–2021 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2019 Online Only New for Version 1.0 (Release 2019a)
September 2019 Online only Revised for Version 1.1 (Release 2019b)
March 2020 Online only Revised for Version 1.2 (Release 2020a)
September 2020 Online only Revised for Version 1.3 (Release 2020b)
March 2021 Online only Revised for Version 1.4 (Release 2021a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Blocks
1

Configuration Parameters
2

Hardware Implementation Pane . 2-2
Hardware Implementation Pane Overview . 2-2
Hardware board settings . 2-2
Design Mapping . 2-2
Task profiling in simulation . 2-3
Task profiling on processor . 2-3
Operating system/scheduler . 2-3
Task and memory simulation . 2-4
Board Parameters . 2-4
Processor . 2-4
Board Options . 2-4
Clocking . 2-4
External Mode . 2-5
FPGA design (top-level) . 2-5
FPGA design (mem controllers) . 2-5
FPGA design (mem channels) . 2-6
FPGA design (debug) . 2-6

Hardware Board Settings . 2-8
Processing Unit . 2-8

Design Mapping . 2-9
View/Edit Task Map . 2-9
View/Edit Peripheral Map . 2-9

Task Profiling in Simulation . 2-10
Show in SDI . 2-10
Save to file . 2-10
Overwrite file . 2-10

Task Profiling on Processor . 2-11
Show in SDI . 2-11
Save to file . 2-11
Overwrite file . 2-11
Instrumentation . 2-11
Profiling duration . 2-11

iii

Contents

Kernel latency . 2-13
Settings . 2-13

Task and Memory Simulation . 2-14
Set seed for simulating task duration and memory access 2-14
Seed Value . 2-14
Cache input data at task start . 2-14

Processor . 2-15
Number of cores . 2-15

Clocking . 2-16
CPU Clock (MHz) . 2-16

Build Action . 2-17
Settings . 2-17

External Mode . 2-18
Communication Interface . 2-18
Run external mode in a background thread . 2-18
Port . 2-18
Verbose . 2-19

FPGA design (top-level) . 2-20
View/Edit Memory Map . 2-20
Include a JTAG master for host-based interaction 2-20
Include processing system . 2-20
Interrupt latency (s) . 2-20
Register configuration clock frequency (MHz) . 2-20
IP core clock frequency (MHz) . 2-20

FPGA design (mem controllers) . 2-22
Controller clock frequency (MHz) . 2-22
Controller data width (bits) . 2-22
Bandwidth derating (%) . 2-22
First write transfer latency (clocks) . 2-22
Last write transfer latency (clocks) . 2-23
First read transfer latency (clocks) . 2-23
Last read transfer latency (clocks) . 2-23

FPGA design (mem channels) . 2-24
Interconnect clock frequency (MHz) . 2-24
Interconnect data width (bits) . 2-24
Interconnect FIFO depth (num bursts) . 2-24
Interconnect almost-full depth . 2-24

FPGA design (debug) . 2-25
Memory channel diagnostic level . 2-25
Include AXI interconnect monitor . 2-25
Trace capture depth . 2-25

iv Contents

Functions
3

Objects
4

Tools
5

v

Blocks

1

SoC Bus Creator
Convert control signals to bus
Library: SoC Blockset / Hardware Logic Connectivity

Description
The SoC Bus Creator block combines a set of signals into a bus. The block accepts control signals and
outputs a bus.

You can configure this block to support multiple protocol interface types. Parameter and port
configurations for this block vary based on your desired protocol interface type and mode of
operation, as outlined in this table.

Protocol
Interface
Type

Mode of
Operation

Parameter Configuration Enabled Input Ports

Data stream Read data stream Set Control protocol to Data
stream and Control type to
Ready.

ready

Write data stream Set Control protocol to Data
stream and Control type to
Valid.

valid
tlast

Pixel stream Read video stream Set Control protocol to Pixel
stream and Control type to
Ready.

ready

Write video stream Set Control protocol to Pixel
stream and Control type to
Valid.

hStart
hEnd
vStart
vEnd
valid

Read video stream
with frame sync

Set Control protocol to Pixel
stream and Control type to
Ready frame with sync.

ready
fsync

Random
access read

Read data Set Control protocol to Random
access read and Control type
to Ready.

rd_addr
rd_len
rd_avalid
rd_dready

1 Blocks

1-2

Protocol
Interface
Type

Mode of
Operation

Parameter Configuration Enabled Input Ports

Random
access write

Write data Set Control protocol to Random
access write and Control type
to Valid.

wr_addr
wr_len
wr_valid

Ports
Input

valid — Valid control signal
boolean scalar

Valid control signal, specified as a scalar. You can use this port for data stream and pixel stream
protocols only.

Dependencies

To enable this port, set the Control protocol parameter to either Data stream or Pixel stream
and the Control type parameter to Valid.
Data Types: Boolean

tlast — Indication of end of data packet
boolean scalar

Indication of end of the data packet, specified as a Boolean scalar.

Dependencies

To enable this port, set the Control protocol parameter to Data stream and the Control type
parameter to Valid.
Data Types: Boolean

ready — Ready control signal
boolean scalar

Ready control signal, specified as a Boolean scalar. This port is available for Data stream and
Pixel stream control protocols.

Dependencies

To enable this port, set the Control protocol parameter to either Data stream or Pixel stream
and the Control type parameter to Ready or Ready with frame sync.
Data Types: Boolean

hStart — First pixel in horizontal line of frame
boolean scalar

First pixel in a horizontal line of a frame, specified as a Boolean scalar.

 SoC Bus Creator

1-3

Dependencies

To enable this port, set the Control protocol parameter to Pixel stream and the Control type
parameter to Valid.
Data Types: Boolean

hEnd — Last pixel in horizontal line of frame
boolean scalar

Last pixel in a horizontal line of a frame, specified as a Boolean scalar.
Dependencies

To enable this port, set the Control protocol parameter to Pixel stream and the Control type
parameter to Valid.
Data Types: Boolean

vStart — First pixel in first (top) line of frame
boolean scalar

First pixel in the first (top) line of a frame, specified as a Boolean scalar.
Dependencies

To enable this port, set the Control protocol parameter to Pixel stream and the Control type
parameter to Valid.
Data Types: Boolean

vEnd — Last pixel in last (bottom) line of frame
boolean scalar

Last pixel in the last (bottom) line of a frame, specified as a Boolean scalar.
Dependencies

To enable this port, set the Control protocol parameter to Pixel stream and the Control type
parameter to Valid.
Data Types: Boolean

fsync — Frame synchronization
boolean scalar

Frame synchronization, specified as a Boolean scalar.
Dependencies

To enable this port, set the Control protocol parameter to Pixel stream and the Control type
parameter to Ready with frame sync.
Data Types: Boolean

rd_addr — Reader address
scalar

Reader address, specified as a scalar. It is the starting address for the read transaction that is
sampled at the first cycle of the transaction.

1 Blocks

1-4

Dependencies

To enable this port, set the Control protocol parameter to Random access read.
Data Types: uint32

rd_len — Reader data length
scalar

Reader data length, specified as a scalar. It means the number of data values that you want to read,
sampled at the first cycle of the transaction.

Dependencies

To enable this port, set the Control protocol parameter to Random access read.
Data Types: uint32

rd_avalid — Reader valid status
boolean scalar

Reader valid status, specified as a Boolean scalar. It indicates whether the read request is valid.

Dependencies

To enable this port, set the Control protocol parameter to Random access read.
Data Types: Boolean

rd_dready — Reader ready status
boolean scalar

Reader ready status, specified as a Boolean scalar. It indicates when the hardware logic can start
accepting data.

Dependencies

To enable this port, set the Control protocol parameter to Random access read.
Data Types: Boolean

wr_addr — Writer address
scalar

Specify the starting address to which the hardware writes.

Dependencies

To enable this port, set the Control protocol parameter to Random access write.
Data Types: uint32

wr_len — Writer data length
scalar

Specify the number of data elements in the write transaction.

Dependencies

To enable this port, set the Control protocol parameter to Random access write.

 SoC Bus Creator

1-5

Data Types: uint32

wr_valid — Writer valid data
boolean scalar

Writer valid data, specified as a scalar. It indicates the data signal sampled at the output is valid.

Dependencies

To enable this port, set the Control protocol parameter to Random access write.
Data Types: Boolean

Output

ctrlBus — Output control bus
bus

Output control bus, returned as a bus.

The data type of the output control bus depends on the values of the Control protocol and Control
type parameters.

Parameter Configuration Output Data Type
Set Control protocol to Data stream and
Control type to Ready.

StreamS2MBusObj

Set Control protocol to Data stream and
Control type to Valid.

StreamM2SBusObj

Set Control protocol to Pixel stream and
Control type to Ready.

StreamVideoS2MBusObj

Set Control protocol to Pixel stream and
Control type to Valid.

pixelcontrol

Set Control protocol to Pixel stream and
Control type to Ready frame with sync.

StreamvideoFsyncS2MBusObj

Set Control protocol to Random access read
and Control type to Ready.

ReadControlM2SBusObj

Set Control protocol to Random access
write and Control type to Valid.

WriteControlM2SBusObj

Data Types: StreamS2MBusObj | StreamM2SBusObj | StreamVideoS2MBusObj | pixelcontrol |
StreamvideoFsyncS2MBusObj | ReadControlM2SBusObj | WriteControlM2SBusObj

Parameters
Control protocol — Protocol interface selection
Data stream (default) | Pixel stream | Random access read | Random access write

Specify the protocol interface as one of these values:

• Data stream — Use this protocol if you require AXI4 data stream.
• Pixel stream — Use this protocol if you require AXI4 video stream.

1 Blocks

1-6

• Random access read — Use this protocol if you require AXI4 read.
• Random access write — Use this protocol if you require AXI4 write.

The input ports of the block vary based on the type of Control protocol and Control type that you
select. For more details, see “Description” on page 1-2.

Control type — Control type selection
Valid (default) | Ready | Ready with frame sync

Specify the type of control.

To enable the Ready with frame sync option, set the Control protocol parameter to Pixel
stream.

The input ports of the block vary based on the type of Control protocol and Control type that you
select. For more details, see “Description” on page 1-2.

Extended Capabilities
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

To automatically generate HDL code for your design, and execute on an SoC device, use the SoC
Builder tool. See “Generate SoC Design”.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
SoC Bus Selector

Introduced in R2019a

 SoC Bus Creator

1-7

SoC Bus Selector
Convert bus to control signals
Library: SoC Blockset / Hardware Logic Connectivity

Description
The SoC Bus Selector block converts a set of control signals from a bus. The block accepts a bus and
outputs control signals.

You can configure this block to support multiple protocol interface types. Parameter and port
configurations for this block vary based on your desired protocol interface type and mode of
operation, as outlined in this table.

Protocol
Interface Type

Mode of
Operation

Parameter
Configuration

Enabled Output Ports

Data stream Read stream data Set Control protocol to
Data stream and
Control type to Valid.

valid
tlast

Write stream data Set Control protocol to
Data stream and
Control type to Ready.

ready

Pixel stream Read video stream Set Control protocol to
Pixel stream and
Control type to Valid.

hStart
hEnd
vStart
vEnd
valid

Write video stream Set Control protocol to
Pixel stream and
Control type to Ready.

ready

Random access
read

Read data Set Control protocol to
Random access read
and Control type to
Valid.

rd_aready
rd_dvalid

Random access
write

Write data Set Control protocol to
Random access write
and Control type to
Ready.

wr_ready
wr_bvalid
wr_complete

1 Blocks

1-8

Ports
Input

ctrlBus — Input control bus
bus

Input control bus, specified as a bus.

The data type of the input control bus depends on the values of the Control protocol and Control
type parameters.

Parameter Configuration Input Data Type
Set Control protocol to Data stream and
Control type to Valid.

StreamM2SBusObj

Set Control protocol to Data stream and
Control type to Ready.

StreamS2MBusObj

Set Control protocol to Pixel stream and
Control type to Valid.

pixelcontrol

Set Control protocol to Pixel stream and
Control type to Ready.

StreamVideoS2MBusObj

Set Control protocol to Random access
read and Control type to Valid.

ReadControlS2MBusObj

Set Control protocol to Random access
write and Control type to Ready.

WriteControlS2MBusObj

Data Types: StreamM2SBusObj | StreamS2MBusObj | pixelcontrol | StreamVideoS2MBusObj |
ReadControlS2MBusObj | WriteControlS2MBusObj

Output

valid — Valid control signal
boolean scalar

Valid control signal, returned as a scalar. You can use this port for data stream and pixel stream
protocols only.

Dependencies

To enable this port, set the Control protocol parameter to either Data stream or Pixel stream
and the Control type parameter to Valid.
Data Types: Boolean

tlast — Indication of end of data packet
boolean scalar

Indication of end of the data packet, returned as a Boolean scalar.

Dependencies

To enable this port, set the Control protocol parameter to Data stream and the Control type
parameter to Valid.

 SoC Bus Selector

1-9

Data Types: Boolean

ready — Ready control signal
boolean scalar

Ready control signal, returned as a Boolean scalar. This port is available for Data stream and
Pixel stream control protocols.
Dependencies

To enable this port, set the Control protocol parameter to either Data stream or Pixel stream
and the Control type parameter to Ready.
Data Types: Boolean

hStart — First pixel in horizontal line of frame
boolean scalar

First pixel in a horizontal line of a frame, returned as a Boolean scalar.
Dependencies

To enable this port, set the Control protocol parameter to Pixel stream and the Control type
parameter to Valid.
Data Types: Boolean

hEnd — Last pixel in horizontal line of frame
boolean scalar

Last pixel in a horizontal line of a frame, returned as a Boolean scalar.
Dependencies

To enable this port, set the Control protocol parameter to Pixel stream and the Control type
parameter to Valid.
Data Types: Boolean

vStart — First pixel in first (top) line of frame
boolean scalar

First pixel in the first (top) line of a frame, returned as a Boolean scalar.
Dependencies

To enable this port, set the Control protocol parameter to Pixel stream and the Control type
parameter to Valid.
Data Types: Boolean

vEnd — Last pixel in last (bottom) line of frame
boolean scalar

Last pixel in the last (bottom) line of a frame, returned as a Boolean scalar.
Dependencies

To enable this port, set the Control protocol parameter to Pixel stream and the Control type
parameter to Valid.

1 Blocks

1-10

Data Types: Boolean

rd_aready — Accept read requests
boolean scalar

Accept read requests, returned as a scalar. It indicates when to accept read requests.

Dependencies

To enable this port, set the Control protocol parameter to Random access read.
Data Types: Boolean

rd_dvalid — Read request valid
boolean scalar

Read request valid, returned as a Boolean scalar. It is the control signal that indicates the data
returned from the read request is valid.

Dependencies

To enable this port, set the Control protocol parameter to Random access read.
Data Types: Boolean

wr_ready — Write ready signal
boolean scalar

Write ready signal, returned as a Boolean scalar. It corresponds to the backpressure from the slave IP
core or external memory. When this value is 1 (high), it indicates that data can be sent. When this
value is 0 (low), it indicates that the hardware logic must stop sending data within one clock cycle.

Dependencies

To enable this port, set the Control protocol parameter to Random access write.
Data Types: Boolean

wr_bvalid — Write valid signal
boolean scalar

Write valid signal, returned as a Boolean scalar. It is the response signal from the slave IP core that
you can use for diagnosis purposes. This value becomes 1 (high) after the AXI4 interconnect accepts
each burst transaction.

Dependencies

To enable this port, set the Control protocol parameter to Random access write.
Data Types: Boolean

wr_complete — Write transaction complete
boolean scalar

Write transaction complete, specified as a Boolean scalar. It is the control signal that when remains
high for one clock cycle indicates that the write transaction has completed. This signal asserts at the
last wr_bvalid of the burst.

 SoC Bus Selector

1-11

Dependencies

To enable this port, set the Control protocol parameter to Random access write.
Data Types: Boolean

Parameters
Control protocol — Protocol interface selection
Data stream (default) | Pixel stream | Random access read | Random access write

Specify the protocol interface as one of these values:

• Data stream — Use this protocol if you require AXI4 data stream.
• Pixel stream — Use this protocol if you require AXI4 video stream.
• Random access read — Use this protocol if you require AXI4 read.
• Random access write — Use this protocol if you require AXI4 write.

The output ports of the block vary based on the type of Control protocol and Control type that you
select. For more details, see “Description” on page 1-8.

Control type — Control type selection
Valid (default) | Ready

Specify the type of control.

The output ports of the block vary based on the type of Control protocol and Control type that you
select. For more details, see “Description” on page 1-8.

Extended Capabilities
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

To automatically generate HDL code for your design, and execute on an SoC device, use the SoC
Builder tool. See “Generate SoC Design”.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
SoC Bus Creator

Introduced in R2019a

1 Blocks

1-12

Stream FIFO
Control backpressure between hardware logic and upstream data interface
Library: SoC Blockset / Hardware Logic Connectivity

Description
The Stream FIFO block controls the backpressure from the hardware logic to the upstream data
interface. It also controls the flow between the upstream and downstream data interfaces of the
hardware logic. Integrate this block as a configurable first-in, first-out (FIFO) block for AXI4 data
stream applications. The block enables you to configure its depth and set its almost full threshold
value.

Ports
Input

dataIn — Input stream data
scalar

Input stream data from the data source. Specify this value as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

dValidIn — Indication of valid input stream data
Boolean scalar

Control signal that indicates if the input stream data from the data source is valid. When this value is
1 (true), the block accepts the values on the dataIn port. When this value is 0 (false), the block
ignores the values on the dataIn port.
Data Types: Boolean

rdyFromDown — Ready signal from downstream interface
Boolean scalar

Control signal that indicates if the block can send stream data to the downstream interface. When
this value is 1 (true), the downstream interface is ready, and the block can send the stream data.
When this value is 0 (false), the downstream interface is not ready, and the block cannot send the
stream data.
Data Types: Boolean

Output

dataOut — Output stream data
scalar

 Stream FIFO

1-13

Output stream data to the downstream interface. The data type of this output data is the same as the
data type of the input data.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

dValidOut — Indication of valid output stream data
Boolean scalar

Control signal that indicates if the output stream data is valid. When this value is 1 (true), the output
stream data on the dataOut port is valid. When this value is 0 (false), the output stream data on the
dataOut port is not valid.
Data Types: Boolean

rdyToUp — Ready signal to upstream interface
Boolean scalar

Control signal that indicates if the block is ready to receive stream data from the upstream interface.
When this value is 1 (true), the block is ready to accept stream data from the upstream interface.
When this value is 0 (false), the block is not ready to accept stream data from the upstream interface.
Data Types: Boolean

Parameters
Depth of FIFO — FIFO depth
16 (default) | positive integer

Specify the depth of the FIFO. This value must be a positive integer and is the maximum number of
entries that can be buffered before data gets dropped.

Almost full threshold — Almost full threshold value
8 (default) | positive integer

Specify a value that asserts a back-pressure signal from the block to the data source.

To avoid dropping data, set a value allowing the data source enough time to react to backpressure.
This value must be a positive integer and smaller than the FIFO depth.

Extended Capabilities
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

To automatically generate HDL code for your design, and execute on an SoC device, use the SoC
Builder tool. See “Generate SoC Design”.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Video Stream FIFO

1 Blocks

1-14

Introduced in R2019a

 Stream FIFO

1-15

Video Stream FIFO
Control backpressure between hardware logic and upstream video interface
Library: SoC Blockset / Hardware Logic Connectivity

Description
The Video Stream FIFO block controls the back-pressure from the hardware logic to the upstream
video interface. It also controls the flow between the upstream and downstream pixel data interfaces
of hardware logic. Integrate this block as a configurable first-in, first-out (FIFO) block for AXI4 video
stream applications. The block enables you to configure its depth and set its almost full threshold
value.

Ports
Input

pixelIn — Input pixel data
scalar

Input pixel data from the data source. Specify this value as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

ctrlIn — Control signals accompanying input pixel data
pixelcontrol bus

Control signals accompanying the pixel stream, specified as a pixelcontrol bus containing five
signals. The signals describe the validity of the pixel and its location in the frame.
Data Types: pixelcontrol

rdyFromDown — Ready signal from downstream interface
Boolean scalar

Control signal that indicates if the block can send pixel data to the downstream interface. When this
value is 1 (true), the downstream interface is ready, and the block can send the pixel data. When this
value is 0 (false), the downstream interface is not ready, and the block cannot send the pixel data.
Data Types: Boolean

Output

pixelOut — Output pixel data
scalar

Output pixel data to the downstream interface. The data type of this output data is the same as the
data type of the input data.

1 Blocks

1-16

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

ctrlOut — Control signals accompanying output pixel data
pixelcontrol bus

Control signals accompanying output pixel stream, returned as a pixelcontrol bus containing five
signals. The signals describe the validity of the pixel and its location in the frame.
Data Types: pixelcontrol

rdyToUp — Ready signal to upstream interface
Boolean scalar

Control signal that indicates if the block is ready to receive pixel data from the upstream interface.
When this value is 1 (true), the block is ready to accept pixel data from the upstream interface. When
this value is 0 (false), the block is not ready to accept pixel data from the upstream interface.
Data Types: Boolean

Parameters
Depth of FIFO — FIFO depth
16 (default) | positive integer

Specify the depth of the FIFO. This value must be a positive scalar integer and is the maximum
number of entries that can be buffered before data gets dropped.

Almost full threshold — Almost full threshold value
8 (default) | positive integer

Specify a value that asserts a back-pressure signal from the block to the data source.

To avoid dropping data, set a value allowing the data source enough time to react to backpressure.
This value must be a positive integer and smaller than the FIFO depth.

Extended Capabilities
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

To automatically generate HDL code for your design, and execute on an SoC device, use the SoC
Builder tool. See “Generate SoC Design”.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Stream FIFO

Introduced in R2019a

 Video Stream FIFO

1-17

Video Stream Connector
Connect two IPs with video streaming interfaces
Library: SoC Blockset / Hardware Logic Connectivity

Description
The Stream Connector block connects two IPs with video streaming interfaces. Use this block in the
FPGA model of an SoC application to connect two IPs.

Ports
Input

wrData — Input video data
scalar

Input video data from the data source. Specify this value as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

wrCtrlIn — Input control signals accompanying pixel stream
pixelControl bus

Control signals accompanying the pixel stream, specified as a pixelcontrol bus containing five
signals. The signals describe the validity of the pixel and its location in the frame. For additional
information about the pixelcontrol bus type, see “AXI4-Stream Video Interface”.
Data Types: pixelcontrol

rdCtrlIn — Ready signal from downstream interface
boolean scalar

Control signal that indicates if the block can send video data to downstream interface. When this
value is (true), the downstream block is ready to receive data.

Output

rdData — Output video data
scalar

Output video data to the downstream destination IP.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

rdCtrlOut — Output control signals accompanying output pixel stream
pixelcontrol bus

1 Blocks

1-18

Control signals accompanying the output video data, specified as a pixelcontrol bus containing
five signals. The signals describe the validity of the pixel and its location in the frame.
Data Types: pixelcontrol

wrCtrlOut — Ready signal to the upstream interface
boolean scalar

Control signal that indicates that the block can receive stream data from upstream interface.
Data Types: Boolean

Extended Capabilities
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

To automatically generate HDL code for your design, and execute on an SoC device, use the SoC
Builder tool. See “Generate SoC Design”.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Stream Connector

Introduced in R2019a

 Video Stream Connector

1-19

Stream Connector
Connect two IPs with data streaming interfaces
Library: SoC Blockset / Hardware Logic Connectivity

Description
The Stream Connector block connects two IPs with data streaming interfaces. Use this block in the
FPGA model of an SoC application to connect two IPs.

Ports
Input

wrData — Input stream data
scalar

Input stream data from the data source. Specify this value as a scalar.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

wrValid — Indication of valid input stream data
boolean scalar

Control signal that indicates if the input data from the data source is valid. When this value is (true),
the block accepts the values on the wrData port. When this value is (false), the block ignores the
value on the wrData port.
Data Types: Boolean

wrLast — Indication of last beat in burst
boolean scalar

Control signal that indicates the last beat of data from the upstream IP.
Data Types: Boolean

rdReady — Ready signal from downstream interface
boolean scalar

Control signal that indicates if the block can send stream data to the downstream interface. When
this value is (true), the downstream block is ready to receive data.
Data Types: Boolean

1 Blocks

1-20

Output

rdData — Output stream data
scalar

Output stream data to the downstream destination IP.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

rdValid — Indication of valid output stream data
boolean scalar

Control signal that indicates if the output stream data is valid.
Data Types: Boolean

rdLast — Indicates last beat in burst
boolean scalar

Control signal that indicates that the output stream data now has last beat of burst data.
Data Types: Boolean

wrReady — Ready signal to upstream interface
boolean scalar

Control signal that indicates if the block can receive stream data from the upstream interface.
Data Types: Boolean

Extended Capabilities
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

To automatically generate HDL code for your design, and execute on an SoC device, use the SoC
Builder tool. See “Generate SoC Design”.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Video Stream Connector

Introduced in R2019a

 Stream Connector

1-21

DIP Switch
Connect signals attached to DIP switches on hardware board
Library: SoC Blockset / Hardware Logic I/O

Description
The DIP Switch block controls the hardware logic. The hardware logic signals connected to a DIP
Switch block are equivalent to the signals connected to the dual inline package (DIP) switches on the
hardware board.

Ports
Input

DSInx — Input signal
Boolean scalar

Input signal to control the hardware logic. Using this port, you can dynamically control the hardware
logic during simulation at run time. Each DIP switch has a port, named DSIn1 to DSInx, where x is
Number of DIP switches.
Dependencies

To enable this port, set the Specify DIP switches via parameter to InputPort.
Data Types: Boolean

Output

DSx — Output signal
Boolean scalar

Output signal that returns the state of the switch. Each DIP switch has a port, named DS1 to DSx,
where x is Number of DIP switches.
Data Types: Boolean

Parameters
Hardware board — View selected hardware
None (default) | Supported Xilinx® or Intel ® boards | Custom boards

This parameter is read-only. To choose a hardware board and configure board parameters, see
“Hardware Implementation Pane” on page 2-2.

View DIP switches location — View DIP switches
button

1 Blocks

1-22

To view a diagram with the location of the DIP switches on the selected hardware board, click the
View DIP switches location button.

This button is enabled only when you select specific Xilinx or Intel boards. For more information
about these boards, refer to “Supported Third-Party Tools and Hardware”.

IO logic — IO logic indicator
None (default) | Active High | Active Low

This parameter is read-only. Indicates the IO logic level on the selected hardware board.

When the IO logic parameter is shown as Active Low, the DIP Switch block accepts and outputs
active low signals when you set the Specify DIP switches via parameter to InputPort and outputs
active low signals when you set the Specify DIP switches via parameter to Dialog. The block
represents these port names prefixed with letter n. For example, nDS1.

Specify DIP switches via — DIP switch source
Dialog (default) | InputPort

To control the hardware logic by using the block parameters, select Dialog. To control the hardware
logic from the input port, select InputPort.

Number of DIP switches — DIP switch selection
1 (default) | list of integers in the range [1, n]

To specify the required number of DIP switch ports, select a value from the Number of DIP
switches list. n represents the number of available DIP switches on the specified hardware board.
For example, if you select 3 from the list, the block shows three DIP switch ports.

To use only the nth DIP switch, set the Number of DIP switches parameter to n and terminate the
unused DIP switch ports.

DSn — Selected DIP switches
Off (default) | On

To enable the nth DIP switch port, select On for the DSn parameter. n represents the number of
available DIP switches on the specified hardware board.

Dependencies

To enable this parameter, set the Specify push buttons via parameter to Dialog.

Sample time — System sample time
-1 (default) | positive scalar

Specify the time interval a DIP switch toggles between On and Off.

Extended Capabilities
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

To automatically generate HDL code for your design, and execute on an SoC device, use the SoC
Builder tool. See “Generate SoC Design”.

 DIP Switch

1-23

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
LED | Push Button

Introduced in R2019a

1 Blocks

1-24

I2C Master
Configure and communicate with I2C slave device
Library: SoC Blockset / Hardware Logic I/O

Description
The I2C Master block configures and communicates with an inter-integrated circuit communications
(I2C) slave device connected to a field programmable gate array (FPGA). This block contains an I2C
master controller with an AXI-Lite interface to perform the configuration.

The I2C Master block supports these features:

• AXI4-Lite interface support for configuration and access
• Single-master and multi-slave support
• Support 7-bit and 10-bit address I2C slave devices
• Burst mode support with a maximum burst size of 256 bytes
• Support multiple transmission speed modes
• An HDL-IP compatible model with code generation capability

The block uses the AXI-Lite interface to configure and create a control path interface to communicate
with an I2C slave device. The hardware generated from the generation process contains an AXI-Lite
register interface and two hardware interfaces, serial clock (SCL), and serial data (SDA). SCL and
SDA connect the I2C Master block and the slave device.

Each port represented in the block is an AXI-Lite register, except the sdaIn, sclIn, scl, and sda
ports. To communicate with a slave device, the AXI-Lite register interface configures the register
information in the I2C Master block. This table contains the I2C Master AXI-Lite register information.

Register Address Port and Register Name Register Size
in Bits

Operation Mode

0x100 ctrlInf — Control
information

32 Write

0x104 slvAddr — Slave address 32 Write
0x108 regAddr — Register

address
32 Write

0x10C dataReg — Data register 32 Write

 I2C Master

1-25

Register Address Port and Register Name Register Size
in Bits

Operation Mode

0x110 readDone — Read done
register

32 Write

0x114 done — Done register 32 Write
0x118 rdy — Ready register 32 Read
0x11C respData — First response

data register
32 Read

0x120 validData — Response data
valid register

32 Read

0x124 statusReg — Status
register

32 Read

To perform read and write operations using the I2C Master block, you need to follow a proper
sequence. This section provides information about the sequence flow for read and write operations.

Read Sequence

To read data from an external slave device:

1 Send the ctrlInf register information.
2 Send the slvAddr register information.
3 Send the regAddr register information.
4 Set the done register to 1 after sending one set of register information to the block and then set

it to 0.
5 Read the response data from the external slave device. After reading the data from the respData

register, set the readDone register to 1 and then set it to 0 immediately.
6 Set the readDone register to 1 again, to read more than 4 bytes of data. After the read

operation, set it to 0 immediately.

In read sequence, one set of register information is a combination of ctrlInf, slvAddr, and regAddr
registers.

Write Sequence

To write data to an external slave device:

1 Send the ctrlInf register information.
2 Send the slvAddr register information.
3 Send the regAddr register information.
4 Send the dataReg register that contains the data to write to the slave device register.
5 Set the done register to 1 after writing one set of register information to the block, and then set

it to 0.
6 Set the done register to 1 again, to write more than 4 bytes of data. After the write operation,

set it to 0 immediately.

In write sequence, one set of register information is a combination of ctrlInf, slvAddr, regAddr, and
dataReg registers.

1 Blocks

1-26

Ports
Input

ctrlInf — Control information
scalar

Control information register contains configuration information on how the block communicates with
the slave device, specified as a scalar. This register is a combination of read or write operation
indication bit, number of bytes of slave-device register address, number of bytes of slave-device data
register, and slave device address type bit. You can modify the configuration based on your
requirement.

Bit Purpose Value Description
0 Set write or read mode. To write to the slave-device register, set this

value to 0. To read from the slave-device
register, set this value to 1.

[2:1] Set the size of the slave-
device register address.

If the slave-device register address size is:

• One byte (8 bits), set this value to 00
• Two bytes (16 bits), set this value to 01
• Three bytes (24 bits), set this value to 10
• Four bytes (32 bits), set this value to 11

 I2C Master

1-27

Bit Purpose Value Description
[10:3] Set the data size of the slave-

device register.
If the slave-device register supports:

• One byte of data, set this value to 00000000
• Two bytes of data, set this value to 00000001
• Three bytes of data, set this value to

00000010
• Four bytes of data, set this value to

00000011
• Five bytes of data, set this value to 00000100
• Six bytes of data, set this value to 00000101
• Seven bytes of data, set this value to

00000110
• Eight bytes of data, set this value to

00000111
• Nine bytes of data, set this value to

00001000
• Ten bytes of data, set this value to 00001001
• Eleven bytes of data, set this value to

00001010
• Twelve bytes of data, set this value to

00001011
• Thirteen bytes of data, set this value to

00001100
• Fourteen bytes of data, set this value to

00001101
• Fifteen bytes of data, set this value to

00001110
• Sixteen bytes of data, set this value to

00001111

….…....

• 256 bytes of data, set this value to 11111111
11 Set the slave device type To configure 7-bit address slave device, set this

value to 0. To configure 10-bit address slave
device, set this value to 1.

Data Types: uint16

slvAddr — Slave address
scalar

Slave-address register that contains the address of the slave device, specified as a scalar.
Data Types: uint16

1 Blocks

1-28

regAddr — Register address
scalar

Register address of the slave device, specified as a scalar.
Data Types: uint32

dataReg — Data register
scalar

Data register, specified as a scalar. The block uses this port to write data to the slave-device register.
Data Types: uint32

readDone — Read done signal
Boolean scalar

Read done signal, specified as a Boolean scalar. When this value is 1 (true), the user is ready to read
the response data from the block that is received from the slave device. When this value is 0 (false),
the user is not ready to read the response data from the block.
Data Types: Boolean

done — Done signal
Boolean scalar

Done signal, specified as a Boolean scalar. This value indicates the block when to read the AXI-Lite
register information.
Data Types: Boolean

sdaIn — Input serial data
Boolean scalar

Input serial data, returned as a Boolean scalar. This port provides a serial data signal to the block
from the slave device.
Data Types: Boolean

sclIn — Input serial clock
Boolean scalar

Input serial clock, returned as a Boolean scalar. This port provides a serial clock signal to the block
from the slave device.
Data Types: Boolean

Output

scl — Output serial clock
Boolean scalar

Output serial clock, specified as a Boolean scalar. This port provides a serial clock signal from the
block to the slave device.
Data Types: Boolean

sda — Output serial data
Boolean scalar

 I2C Master

1-29

Output serial data, specified as a Boolean scalar. This port provides a serial data signal from the
block to the slave device.
Data Types: Boolean

rdy — Ready signal
Boolean scalar

Ready signal, returned as a Boolean scalar. When this value is 1 (true), the block is ready to accept
the configuration data. When this value is 0 (false), the block is not ready to accept the configuration
data.
Data Types: Boolean

respData — Response data register
scalar

Response data register containing the data from the slave-device register, returned as a scalar.
Data Types: uint32

validData — Indication of valid response data
Boolean scalar

Control signal that indicates if the response data is valid, returned as a Boolean scalar. When this
value is 1 (true), the response data from response data registers is valid. When this value is 0 (false),
the response data from response data registers is not valid.
Data Types: Boolean

statusReg — I2C bus status indicator
scalar

Indicates the status of the I2C bus, returned as a scalar.

Bit Purpose Value Description
[7:4] Reserved Reserved
3 Indicates the status of the

I2C bus.
When this value is 1, it indicates that the I2C
bus is busy. When this value is 0, it indicates
that the I2C bus is idle and ready for
configuration.

2 Indicates the
acknowledgment status from
the slave device to the I2C
Master.

When this value is 1, it indicates that the slave
device has not acknowledged the I2C Master.
When this value is 0, it indicates that the slave
device has acknowledged the I2C Master.

[1:0] Reserved Reserved

Data Types: uint32

Parameters
Speed — Speed-mode selection
Standard Mode (default) | Fast Mode | Fast Plus Mode

1 Blocks

1-30

Specify the speed mode as one of these values:

• Standard Mode — Supports frequencies up to 100 KHz
• Fast Mode — Supports frequencies up to 400 KHz
• Fast Plus Mode — Supports frequencies up to 1 MHz

Compatibility Considerations
I2C Master block has one data register input port and one data register output port
Behavior changed in R2020a

In R2019a, the I2C Master block has input data register ports dataReg, dataReg1, dataReg2, and
dataReg3 and output response data register ports respData, respData1, respData2, and
respData3. These data register ports support a maximum of 16 bytes per transaction. In R2020a,
these register ports are replaced with single data register ports: input port dataReg and output port
respData. Each of these single data register ports support a maximum of 256 bytes per transaction.

In R2020a, Simulink® errors if you open a model that was created in an earlier release and that
contains an I2C Master block. In this case, connections to ports dataReg1, dataReg2, dataReg3,
respData1, respData2, and respData3 are either missing or reconnected to empty ports on the
block. Manually check and update the port connections in your model to proceed further.

Extended Capabilities
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

To automatically generate HDL code for your design, and execute on an SoC device, use the SoC
Builder tool. See “Generate SoC Design”.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also

Introduced in R2019a

 I2C Master

1-31

LED
Connect signals attached to LEDs on hardware board
Library: SoC Blockset / Hardware Logic I/O

Description
The LED block indicates the status of a signal. The hardware logic signals connected to an LED block
are equivalent to the signals connected to the light emitting diodes (LED) on the hardware board.

Ports
Input

LEDx — Input signal
Boolean scalar

Input signal from the hardware logic. Each LED has a port, named LED1 to LEDx, where x is
Number of LEDs.
Data Types: Boolean

Parameters
Hardware board — View selected hardware
None (default) | Supported Xilinx or Intel boards | Custom boards

This parameter is read-only. To choose a hardware board and configure board parameters, see
“Hardware Implementation Pane” on page 2-2.

View LEDs location — View LEDs
button

To view a diagram of the location of the LEDs on the selected hardware board, click the View LEDs
location button.

This button is enabled only when you select specific Xilinx or Intel boards. For more information
about these boards, refer to “Supported Third-Party Tools and Hardware”.

IO logic — IO logic indicator
None (default) | Active High | Active Low

This parameter is read-only. Indicates the IO logic level on the selected hardware board.

When the IO logic parameter is shown as Active Low, the LED block accepts active low signals and
represents the port names prefixed with letter n. For example, nLED1.

1 Blocks

1-32

Number of LEDs — Number of LED ports
1 (default) | list of integers in the range [1, n]

Specify the required number of LED ports by specifying a value from this list. n is the number of
available LEDs on the specified hardware board. For example, if you set this parameter to 4, the
block shows four LED ports.

To use only the nth LED, set the Number of LEDs parameter to n and leave the unused LED ports
unconnected.

For the Zynq® UltraScale+™ RFSoC ZCU216 Evaluation Kit, the first three LED ports represent the
first set of red, green, and blue (RGB) LEDs out of the eight available sets, the next three LED ports
represent the second set of RGB LEDs, and so on. For example, if you set the Number of LEDs
parameter to 9, the LED1, LED4, and LED7 ports connect to the red LEDs, the LED2, LED5, and
LED8 ports connect to the green LEDs, and the LED3, LED6, and LED9 ports connect to the blue
LEDs on the ZCU216 evaluation board.

Extended Capabilities
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

To automatically generate HDL code for your design, and execute on an SoC device, use the SoC
Builder tool. See “Generate SoC Design”.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
DIP Switch | Push Button

Introduced in R2019a

 LED

1-33

Push Button
Connect signals attached to push buttons on hardware board
Library: SoC Blockset / Hardware Logic I/O

Description
The Push Button block controls the hardware mechanism. The hardware logic signals connected to a
Push Button block are equivalent to the signals connected to the push buttons on the hardware
board.

Ports
Input

PBInx — Input signal
Boolean scalar

Input signal to control the hardware logic. Using these ports, you can dynamically control the
hardware logic during simulation at run time. Each push button has a port, named PBIn1 to PBInx,
where x is Number of push buttons.
Dependencies

To enable this port, set the Specify push buttons via parameter to InputPort.
Data Types: Boolean

Output

PBx — Output signal
Boolean scalar

Output signal that returns the state of the push button. Each push button has a port, named PB1 to
PBx, where x is Number of push buttons.
Data Types: Boolean

Parameters
Hardware board — View selected hardware
None (default) | Supported Xilinx or Intel boards | Custom boards

This parameter is read-only. To choose a hardware board and configure board parameters, see
“Hardware Implementation Pane” on page 2-2.

View push buttons location — View push buttons
button

1 Blocks

1-34

To view a diagram of the location of the push buttons on the selected hardware board, click the View
push buttons location button.

This button is enabled only when you select specific Xilinx or Intel boards. For more information
about these boards, refer to “Supported Third-Party Tools and Hardware”.

IO logic — IO logic indicator
None (default) | Active High | Active Low

This parameter is read-only. Indicates the IO logic level on the selected hardware board.

When the IO logic parameter is shown as Active Low, the Push Button block accepts and outputs
active low signals when you set the Specify push buttons via parameter to InputPort and outputs
active low signals when you set the Specify push buttons via parameter to Dialog. The block
represents these port names prefixed with letter n. For example, nPB1.

Specify push buttons via — Push-button source
Dialog (default) | InputPort

To control the hardware logic by using the block parameters, select Dialog. To control the hardware
logic from the input port, select InputPort.

Number of push buttons — Push-button selection
1 (default) | list of integers in the range [1, n]

To specify the required number of push-button ports, select a value from the Number of push
buttons list. n represents the number of available push buttons on the specified hardware board. For
example, if you select 3 from the list, the block shows three push-button ports.

To use only the nth push button, set the Number of push buttons parameter to n and terminate the
unused push button ports.

PBn — Selected push buttons
Off (default) | On

To enable the nth push-button port, select On for the PBn parameter. n represents the number of
available push buttons on the specified hardware board.

Dependencies

To enable this parameter, set the Specify push buttons via parameter to Dialog.

Sample time — Sampling interval
-1 (default) | positive scalar

Specify the time interval a push button toggles between On and Off.

Extended Capabilities
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

To automatically generate HDL code for your design, and execute on an SoC device, use the SoC
Builder tool. See “Generate SoC Design”.

 Push Button

1-35

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
DIP Switch | LED

Introduced in R2019a

1 Blocks

1-36

AXI4 Master Sink
Receive random access memory data
Library: SoC Blockset / Hardware Logic Testbench

Description
The AXI4 Master Sink block receives random access memory data from AXI4-based data interface
blocks. You can use this block as a test sink block for simulating AXI4-based data applications.

The block accepts data along with a control bus and outputs a control bus.

Ports
Input

rdData — Input data
scalar | vector

Input data from the data source. This value must be a scalar or vector.

Before reading the data, set the required data type. To set the data type, see the Data type
parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

rdCtrlIn — Input control bus
bus

Input control bus from the data producer, specified as a bus. This control bus comprises these control
signals:

• rd_aready — Indicates the data source accepted the read request
• rd_dvalid — Indicates the data returned for the read request is valid

Data Types: ReadControlS2MBusObj

Output

rdCtrlOut — Output control bus
bus

Output control bus to the data source indicating the block is ready to accept data, returned as a
scalar. This control bus comprises these control signals:

• rd_addr — Starting address for the read transaction that is sampled at the first cycle of the
transaction

 AXI4 Master Sink

1-37

• rd_len — Number of data values you want to read, sampled at the first cycle of the transaction
• rd_avalid — Control signal that specifies whether the read request is valid
• rd_dready — Control signal that indicates when the block can read data

Data Types: ReadControlM2SBusObj

Parameters
Data type — Input data type
uint8 (default) | double | single | int8 | int16 | int32 | int64 | uint16 | uint32 | uint64 |
fixed point

Select the data type format for the input AXI data.

Click the button to display the Data Type Assistant, which helps you to set the data type for
the rdData input port. For details, see “Specify Data Types Using Data Type Assistant”.

Dimensions — Input data dimensions
10 (default) | positive integer | array

Specify the dimensions of the input data as a positive scalar or an array. This value defines the length
of the transaction.
Example: 1 specifies a scalar sample.
Example: [10 1] specifies a vector of ten scalars.

Enable sample packing (last signal dimension as channel) — Pack data on the last
dimension of the signal
off (default) | on

Select this parameter to enable data packing across the last dimension of the signal. The Memory
Channel block packs the data along the last dimension of the signal. For example, if the channel data
type is uint32, the dimensions are [1024 4], and if you select this parameter, then the memory
channel generates 1024 read or write transactions of 128 bits. For this example, if you clear this
sample packing parameter, the memory channel generates 4096 transactions of 32 bits each.

This figure shows how data is aligned for a signal with data type fixdt10[4x3]. When the data is
packed, three 10-bit words are concatenated and extended by 2 bits to a 32-bit sample. When the
data is not packed, each 10-bit word is extended to a 16-bit sample.

This figure shows how data is aligned for a signal with data type uint8[8x3]. When the data is
packed, three 8-bit words are concatenated and extended by 8 bits to a 32-bit sample. When the data
is not packed, each 8-bit word is represented as an 8-bit sample.

1 Blocks

1-38

The combined width of the flattened signal must not exceed 512 bits.

Number of transfers — Number of read requests to send
1 (default) | positive integer

Specify the number of read requests for the block to send.

Initial address — Start address
0 (default) | nonnegative scalar integer

Specify the address from which the block reads the data. This value must be a nonnegative integer.

Initial delay — Initial delay
0 (default) | nonnegative scalar

Specify the initial time after which the read operation starts.

Sample time — Time interval of sampling
1 (default) | scalar

Specify a discrete time at which the block accepts data. This value must be a scalar.

Save data in workspace — Save to workspace
off (default) | on

Select this parameter to save the input data to the MATLAB® workspace.

Variable name — Workspace variable name
simOut (default) | any MATLAB-supported variable name

Specify the workspace variable to which input data is saved. This parameter can be any MATLAB-
supported variable name.

Dependencies

To enable this parameter, select the Save data in workspace parameter.

See Also
AXI4 Master Source

Introduced in R2019a

 AXI4 Master Sink

1-39

AXI4 Master Source
Generate random access memory data
Library: SoC Blockset / Hardware Logic Testbench

Description
The AXI4 Master Source block generates random access memory data to AXI4-based data interface
blocks. You can use this block as a test source block for simulating AXI4-based data applications.

The block accepts a control bus and outputs data along with a control bus.

Ports
Input

wrCtrlIn — Input control bus
bus

Control bus from the data consumer signaling that data consumer is ready to accept data, specified
as a scalar. This control bus comprises these control signals:

• wr_ready — Indicates the block can send data to the data consumer
• wr_complete — Indicates the write transaction has completed at the data consumer
• wr_bvalid — Indicates the data consumer has accepted the transaction

Data Types: WriteControlS2MBusObj

Output

wrData — Output AXI data
scalar | vector

Output AXI data to the data consumer. This value is returned as a scalar or vector.

You can change the data type of the output data. For more information, see the Data type parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

wrCtrlOut — Output control bus
bus

Control bus to the data consumer, returned as a bus. This control bus comprises these control signals:

• wr_addr — Specifies the starting address that the block writes
• wr_len — Specifies the number of data elements in the write transaction

1 Blocks

1-40

• wr_valid — Indicates the data sampled at the wrData output port is valid

Data Types: WriteControlM2SBusObj

Parameters
Data type — Output data type
uint8 (default) | double | single | int8 | int16 | int32 | int64 | uint16 | uint32 | uint64 |
fixed point

Select the data type format for the output AXI data.

Click the button to display the Data Type Assistant, which helps you to set the data type for
the wrData output port. For details, see “Specify Data Types Using Data Type Assistant”.

Dimensions — Output data dimensions
10 | positive scalar | array

Specify the dimensions of the output data as a positive scalar or an array. This value defines the
length of the transaction.
Example: 1 specifies a scalar sample.
Example: [10 1] specifies a vector of ten scalars.

Enable sample packing (last signal dimension as channel) — Pack data on the last
dimension of the signal
off (default) | on

Select this parameter to enable data packing across the last dimension of the signal. The Memory
Channel block packs the data along the last dimension of the signal. For example, if the channel data
type is uint32, the dimensions are [1024 4], and if you select this parameter, then the memory
channel generates 1024 read or write transactions of 128 bits. For this example, if you clear this
sample packing parameter, the memory channel generates 4096 transactions of 32 bits each.

This figure shows how data is aligned for a signal with data type fixdt10[4x3]. When the data is
packed, three 10-bit words are concatenated and extended by 2 bits to a 32-bit sample. When the
data is not packed, each 10-bit word is extended to a 16-bit sample.

This figure shows how data is aligned for a signal with data type uint8[8x3]. When the data is
packed, three 8-bit words are concatenated and extended by 8 bits to a 32-bit sample. When the data
is not packed, each 8-bit word is represented as an 8-bit sample.

 AXI4 Master Source

1-41

The combined width of the flattened signal must not exceed 512 bits.

Number of transfers — Number of write requests to send
1 (default) | positive integer

Specify the number of write requests for the block to send.

Initial address — Start address
0 (default) | nonnegative integer

Specify the address to which the block writes the data. This value must be a nonnegative integer.

Initial delay — Initial delay
0 (default) | nonnegative scalar

Specify the initial time after which the write operation starts. This value must be a nonnegative
scalar.

Data generation — Output generation type
counter (default) | random | ones | workspace

Specify the generation type for the output as one of these values:

• counter — Generate data from a counter, based on the selected data type.
• random — Generate random data.
• ones — Generate data with all the bits as ones, based on the selected data type.
• workspace — Generate data from the MATLAB workspace.

Counter init value — Initial counter value
0 (default) | scalar

Specify the value from which the counter starts. The valid range of counter values depends on the
selected value for the Data type parameter. If this value is out of the valid range, it is rounded off to
the nearest valid value.

For example, if Data type is uint8 and this value is 6.787, this value is rounded to 7.
Dependencies

To enable this parameter, set the Data generation parameter to counter.

Variable name — Workspace variable name
simOut (default) | any MATLAB-supported variable name

Specify the workspace variable from which output data is generated. This parameter can be any
MATLAB-supported variable name.

1 Blocks

1-42

Note The workspace variable must be a numerical array.

Dependencies

To enable this parameter, set the Data generation parameter to workspace.

Sample time — Time interval of sampling
1 (default) | scalar

Specify the discrete time at which the block outputs data. This value must be a scalar.

See Also
AXI4 Master Sink

Introduced in R2019a

 AXI4 Master Source

1-43

Stream Data Sink
Receive continuous stream data
Library: SoC Blockset / Hardware Logic Testbench

Description
The Stream Data Sink block receives continuous stream data from advanced extensible interface
AXI4-based stream data interface blocks. You can use this block as a test sink block for simulating
AXI4-based stream data applications.

The block accepts stream data along with a control bus and outputs a control bus.

Ports
Input

rdData — Input stream data
scalar | vector

Input stream data from the data source. This value must be a scalar or vector.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

rdCtrlIn — Input control bus
bus

Input control bus from the data source. This control bus comprises the following control signals:

• valid — Indicates the input stream data on the rdData input port is valid
• tlast — Indicates the end of the data transaction

Data Types: StreamM2SBusObj

Output

rdCtrlOut — Output control bus
bus

Output control bus to the data source, indicating that the block is ready to accept stream data. This
control bus comprises a ready signal.
Data Types: StreamS2MBusObj

1 Blocks

1-44

Parameters
Save data in workspace — Save data in workspace
off (default) | on

Select this parameter to save the input stream data to the MATLAB workspace.

Variable name — Workspace variable name
simOut (default) | any MATLAB-supported variable name

Specify the workspace variable to which input stream data is saved. This parameter can be any
MATLAB-supported variable name.

Dependencies

To enable this parameter, select the Save data in workspace parameter.

Extended Capabilities
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

To automatically generate HDL code for your design, and execute on an SoC device, use the SoC
Builder tool. See “Generate SoC Design”.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Stream Data Source

Introduced in R2019a

 Stream Data Sink

1-45

Stream Data Source
Generate continuous stream data
Library: SoC Blockset / Hardware Logic Testbench

Description
The Stream Data Source block generates stream data to advanced extensible interface AXI4-based
stream data interface blocks. You can use this block as a test source block for simulating AXI4-based
stream data applications.

The block accepts a control bus and outputs stream data along with a control bus.

Ports
Input

wrCtrlIn — Input control bus
bus

Control bus from the data consumer signaling that data consumer is ready to accept stream data.
This control bus comprises a ready signal.
Data Types: StreamS2MBusObj

Output

wrData — Output stream data
scalar | vector

Output stream data to the data consumer. This value is returned as a scalar or vector.

You can change the data type of the output stream data. For more information, see the Data type
parameter.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
fixed point

wrCtrlOut — Output control bus
bus

Control bus to the data consumer, returned as a bus. This control bus comprises these control signals:

• valid — Indicates the output data on the wrData output port is valid
• tlast — Indicates the end of the data transaction

Data Types: StreamM2SBusObj

1 Blocks

1-46

Parameters
Data type — Output data type
uint8 (default) | double | single | int8 | int16 | int32 | int64 | uint16 | uint32 | uint64 |
fixdt(1,16,0)

Select the data type format for the output stream data.

Click the button to display the Data Type Assistant, which helps you to set the data type for
the wrData output port. For details, see “Specify Data Types Using Data Type Assistant”.

Dimensions — Output data dimensions
10 (default) | positive integer | array

Specify the dimensions of the output stream data as a positive scalar or an array.
Example: 1 specifies a scalar sample.
Example: [10 1] specifies a vector of ten scalars.

Burst length — Length of single burst
20 (default) | positive integer

Length of the single burst, specified as a positive integer.

Total bursts — Total number of bursts
4 (default) | positive integer

Total number of bursts generated from the block, specified as a positive integer.

Data generation — Output generation type
counter (default) | random | ones | workspace

Specify the generation type for the output as one of these values:

• counter — Generate data from a counter, based on the selected data type.
• random — Generate a random data.
• ones — Generate data with all the bits as ones, based on the selected data type.
• workspace — Generate data from the MATLAB workspace.

Counter init value — Initial counter value
0 (default) | scalar

Specify the value from which the counter starts. The valid range of counter values depends on the
selected value for the Data type parameter. If this value is out of the valid range, it is rounded off to
the nearest valid value.

For example, if Data type is uint8 and this value is 6.787, this value is rounded to 7.
Dependencies

To enable this parameter, set the Data generation parameter to counter.

Variable name — Workspace variable name
simOut (default) | any MATLAB supported variable name

 Stream Data Source

1-47

Specify the variable name from which output stream data is generated. This parameter can be any
MATLAB-supported variable name.

Note The workspace variable must be a numerical array.

Dependencies

To enable this parameter, set the Data generation parameter to workspace.

Sample time — Time interval for sampling
1 (default) | scalar

Specify the discrete time at which the block outputs data. This value must be a scalar.

Transfer delay (in samples) — Delay between bursts
0 (default) | nonnegative integer

Time after which the next burst occurs. This value must be a nonnegative integer.

Extended Capabilities
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

To automatically generate HDL code for your design, and execute on an SoC device, use the SoC
Builder tool. See “Generate SoC Design”.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Stream Data Sink

Introduced in R2019a

1 Blocks

1-48

Video Test Sink
Receive continuous video stream data
Library: SoC Blockset / Hardware Logic Testbench

Description
The Video Test Sink block receives continuous video stream data from advanced extensible interface
AXI4-based video stream data interface blocks. You can use this block as a test sink block for
simulating AXI4-based video stream data applications.

The block accepts video stream data along with a control bus and outputs a control bus.

Ports
Input

rdData — Input video stream data
vector

Input video stream data from the data source. This value must be a vector.
Data Types: uint8

rdCtrlIn — Input control bus
bus

Input control bus from the data source, specified as a bus. This control bus comprises these signals:

• hStart — First pixel in a horizontal line of a frame
• hEnd — Last pixel in a horizontal line of a frame
• vStart — First pixel in the first (top) line of a frame
• vEnd — Last pixel in the last (bottom) line of a frame
• valid — Indicates the input pixel data on rdData input port is valid

Data Types: pixelcontrol

Output

rdCtrlOut — Output control bus
bus

Output control bus to the data source signaling that the block is ready to accept video stream data.
This control bus comprises a ready signal.
Data Types: StreamVideoS2MBusObj

 Video Test Sink

1-49

Parameters
Frame size — Frame dimensions
160x120p (default) | ...

Select the frame dimensions as one of these values:

• 576p SDTV (720x576p)
• 720p HDTV (1280x720p)
• 1080p HDTV (1920x1080p)
• 160x120p
• 320x240p
• 640x480p
• 800x600p
• 1024x768p
• 1280x768p
• 1280x1024p
• 1360x768p
• 1366x768p
• 1400x1050p
• 1600x1200p
• 1680x1050p
• 1920x1200p

The Frame size value must be same as that of the data source.

Color space — Color space
YCbCr422 (default) | RGB | YOnly

Select the type of color space as YCbCr422, RGB, or YOnly. The Color space value must be same as
that of the data source.

Reorder input frame — Input frame reorder
off (default) | on

Select this option to reorder input pixels. Streaming pixel format order is from left to right across
each line, then down to the next line, or row-major. However, some matrix operations use column-
major order, that is, from top to bottom and then right to the next column. Depending on how your
design has manipulated the pixels, you may need to reorder them for correct display.

Save data in workspace — Save data in workspace
off (default) | on

Select this parameter to save the input video stream data to the MATLAB workspace.

Variable name — Workspace variable name
simOut (default) | any MATLAB-supported variable name

1 Blocks

1-50

Specify the workspace to which input video stream data is saved. This parameter can be any
MATLAB-supported variable name.

Dependencies

To enable this parameter, select the Save data in workspace parameter.

View input — Display input in MATLAB
off (default) | on

Select this parameter to view the input video stream data in the MATLAB viewer.

Extended Capabilities
Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Video Test Source

Introduced in R2019a

 Video Test Sink

1-51

Video Test Source
Generate continuous video stream data
Library: SoC Blockset / Hardware Logic Testbench

Description
The Video Test Source block generates continuous video stream data to advanced extensible interface
AXI4-based video stream data interface blocks. You can use this block as a test source block for
simulating AXI4-based video stream data applications.

The block accepts a control bus and outputs video stream data along with a control bus.

Ports
Input

wrCtrlIn — Input control bus
bus

Control bus from the data consumer signaling that data consumer is ready to accept video stream
data. This control bus comprises a ready signal.
Data Types: StreamVideoS2MBusObj

Output

wrData — Output video stream data
vector

Output video stream data to the data consumer. This value is returned as a vector.
Data Types: uint8

wrCtrlOut — Output control bus
bus

Control bus to the data consumer, returned as a bus. This control bus comprises these control signals:

• hStart — First pixel in a horizontal line of a frame
• hEnd — Last pixel in a horizontal line of a frame
• vStart — First pixel in the first (top) line of a frame
• vEnd — Last pixel in the last (bottom) line of a frame
• valid — Indicates the output pixel data on the wrData output port is valid

Data Types: pixelcontrol

1 Blocks

1-52

Parameters
Frame size — Frame dimensions
160x120p (default) | ...

Select the frame dimensions as one of these values:

• 480p SDTV (720x480p)
• 576p SDTV (720x576p)
• 720p HDTV (1280x720p)
• 1080p HDTV (1920x1080p)
• 160x120p
• 320x240p
• 640x480p
• 800x600p
• 1024x768p
• 1280x768p
• 1280x1024p
• 1360x768p
• 1366x768p
• 1400x1050p
• 1600x1200p
• 1680x1050p
• 1920x1200p

Video source — Select video source type
Video file (default) | Color bar | Ramp

Select the type of video source as Video file, Color bar, or Ramp.

Input file name — Select input video file
handshake_left.avi (default) | any supported video file format

Select the input video file by clicking the Browse button and navigating to the video file location.
Dependencies

To enable this parameter, set the Video source parameter to Video file.

Color space — Color space
YCbCr422 (default) | RGB | YOnly

Select the type of color space as YCbCr422, RGB, or YOnly.

Reorder output frame — Output frame reordering
off (default) | on

Select this option to reorder output pixels to column-major order. Streaming pixel format order is
from left to right across each line, then down to the next line, or row-major. However, some matrix
operations use column-major order, that is, from top to bottom and then right to the next column.

 Video Test Source

1-53

Frame sample time — Frame sample time
1/60 (default) | positive scalar

Specify the frame sample time as a positive scalar. The denominator in default value 1/60 denotes
the number of frames per second.

Extended Capabilities
Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Video Test Sink

Introduced in R2019a

1 Blocks

1-54

UDP Read (HOST)
Receive UDP packets on local host computer from remote host
Library: SoC Blockset / Host I/O

Description
The UDP Read (HOST) block receives UDP (User Datagram Protocol) packets from remote host on
the local host. The local host in the host computer on which you want to receive UDP packets. The
remote host is the host computer or hardware from which you want to receive UDP packets.

Ports
Output

data — UDP packet received from remote host
numeric vector

UDP packet received on local host computer, returned as a numeric vector. The Data type for
Message and Length parameters set this output data type and packet length, respectively.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

length — Length of UDP packet
nonnegative scalar

Length of UDP packet returned on the data port.

This port is unnamed until you clear the Output variable-size signal parameter.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Parameters
Local IP port — IP port number of local host
25000 (default) | integer from 1 to 65,535

Specify the IP port number of local host.

Note On Linux®, to set the local IP port number to a value less than 1024, run MATLAB with root
privileges. For example, at the Linux command line, enter:

sudo matlab

Remote IP address ('0.0.0.0' to accept all) — IP address of remote host
'0.0.0.0' (default) | dotted-quad expression

 UDP Read (HOST)

1-55

Specify the IP address of the remote host. Set this value to a specific IP address, to block UDP
packets from all other IP addresses. To accept UDP packets from all IP addresses, use the default
value '0.0.0.0'.

Receive buffer size (bytes) — Maximum number of data bytes in received data
8192 (default) | positive integer

Specify the maximum number of data bytes of UDP packets you want to store in the local buffer. Set
this value large enough to avoid data loss caused by buffer overflows.

Maximum length for Message — Maximum length of data
255 (default) | positive integer scalar

Specify the maximum length of the output UDP packet. Set this parameter to a value equal to or
greater than the data size of the UDP packet. The block truncates any data that exceeds this length.

The maximum payload size of a UDP packet is 65,507 bytes. The Maximum length for Message is
equal to the maximum payload size of a UDP packet in bytes divided by the data type size of the UDP
packet. For example, if the output data type is double, then set Maximum length for Message
value to 65507/8 = 8118.

Data type for Message — Data type of output UDP packet
uint8 (default) | single | double | int8 | int16 | uint16 | int32 | uint32 | boolean

Select the data type for the vector elements of output UDP packet. Match this data type with the data
type of the UDP packets sent by the remote host.

Blocking time (seconds) — Time to wait for UDP packet
0 (default) | nonnegative scalar

Specify the duration of time to wait for a UDP packet before returning control to the scheduler for
each sample.

Sample time (seconds) — Sample time
0.01 (default) | nonnegative scalar

Specify how often the scheduler runs this block.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
UDP Write (HOST)

Introduced in R2019a

1 Blocks

1-56

UDP Write (HOST)
Send UDP packets from host computer to remote host
Library: SoC Blockset / Host I/O

Description
The UDP Write (HOST) block sends UDP (User Datagram Protocol) packets from a local host to a
remote host. The local host in the host computer from which you want to send UDP packets. The
remote host is the host computer or hardware to which you want to send UDP packets. The remote
host is identified by the remote IP address and remote IP port parameters from host computer.

Ports
Input

Port_1 — Input signal
numeric vector

Input signal, specified as a numeric vector. The block sends this data as a UDP packets to the
specified remote IP address and port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Parameters
Remote IP address ('255.255.255.255' for broadcast) — IP address of remote host
'255.255.255.255' (default) | dotted-quad expression

Specify the IP address of the remote host. To broadcast UDP packets, use the default value,
'255.255.255.255'.

Remote IP port — IP port number of remote host
25000 (default) | integer from 1 to 65,535

Specify the IP port number of the remote host.

Local IP port source — Source of local IP port source
Automatically determine (default) | Specify via dialog

Set the source of Local IP port for the block by selecting one of these values:

• Automatically determine — Assigns an available local IP port number randomly from which
UDP packets are sent.

• Specify via dialog — Allows you to specify the local IP port number using the Local IP port
parameter.

 UDP Write (HOST)

1-57

Local IP port — IP port number of local host
-1 (default) | integer from 1 to 65,535

Specify the port number of the local host. If this value is set to -1 (default), the block sets the local IP
port number to a random available port number and uses that port to send the UDP packets. If the
remote host accepts UDP packets from a particular IP port number, specify that IP port number for
this value.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

See Also
UDP Read (HOST)

Introduced in R2019a

1 Blocks

1-58

Interrupt Channel
Send interrupt to processor from hardware
Library: SoC Blockset / Memory

Description
The Interrupt Channel block receives interrupt requests from FPGA logic or the Memory Channel
block, arbitrates the requests, and triggers an event-driven software task to the Task Manager block.
You can connect up to 16 devices to the interrupt controller, with one interrupt per device. The block
consists of these three parts:

• Interrupt Controller – This part accepts interrupt requests (IRQs) and arbitrates them according
to a user-specified priority. When concurrent requests to the interrupt controller exist, requests
with a higher priority are processed before those with a lower priority.

• Kernel Interrupt Service Routine (ISR) – This part receives an interrupt request from the Interrupt
Controller, serves the interrupt, and sends an acknowledge signal back to the Interrupt Controller,
so that it can process the next IRQ.

• IPCore Driver (one per interrupt) – This part receives a request from the Kernel ISR and triggers
an event-driven task in the processor.

Even though the interrupt channel can have more than one interrupt output toward the processor, it
sends no more than one active interrupt event to the processor at any given time.

This image shows a conceptual view of an Interrupt Channel block, that accepts interrupt requests
from an FPGA algorithm. After arbitration, the kernel serves the request and triggers an event to a
processor algorithm.

 Interrupt Channel

1-59

Ports
Input

interruptN — Interrupt request from hardware
True | False

Each interrupt is assigned a port pair: one input port and one output port. By default, the Nth
interrupt port is named interruptN. You can change interrupt names by clicking Edit in the
Interrupts parameter.

Connect this port to a Boolean signal from the FPGA logic or an event from a Memory Channel or
Event Source block.

Dependencies

The number of input ports depends on the number of interrupts in the interrupt table.
Data Types: rteEvent | Boolean

Output

interruptN — Interrupt request signal to processor
scalar

Each interrupt is assigned a port pair: one input port and one output port. By default, the Nth
interrupt port is named interruptN. You can change interrupt names by clicking Edit in the
Interrupts parameter.

Connect this port to a task event input port in the Task Manager block.

Dependencies

The number of output ports depends on the number of interrupts in the interrupt table.
Data Types: rteEvent

1 Blocks

1-60

Parameters
Interrupts — Interrupt name, trigger type, and priority
table

This parameter includes a table, where each of its lines corresponds to an interrupt in the Interrupt
Channel block. Edit the table to add or edit an interrupt. The interrupt channel can have up to 16
interrupts.

For each interrupt, you can edit these values.

• Interrupt Name – Specify the interrupt name. This value changes the input and output port
names for this interrupt.

• Trigger Type – Select the trigger type for the interrupt by choosing either of these options.

• Rising edge – When the interrupt originates in FPGA logic
• SoC event – When the interrupt originates in the Memory Channel block or Event Source

block
• Priority – Set the priority for each interrupt is set in the Priority column. This value remains

static. The top row represents the highest interrupt. Click Move Up to increase the priority of an
interrupt. Click Move Down to decrease the priority of an interrupt.

Interrupt processing time — Processing time for interrupt access
100e-6 (default) | positive scalar

This sample time represents the time required for the interrupt channel to arbitrate and execute an
interrupt request. It is defined as the time required for the Interrupt Controller arbitration, Kernel
ISR execution, and additional delay for the device driver.

Specify the processing time by entering a number, in seconds.

Extended Capabilities
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

To automatically generate HDL code for your design, and execute on an SoC device, use the SoC
Builder tool. See “Generate SoC Design”.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Blocks
Event Source | Memory Channel | Task Manager

Introduced in R2020b

 Interrupt Channel

1-61

IP Core Register Read
Model register writes from software to hardware
Library: SoC Blockset / Memory

Description
The IP Core Register Read block models a write operation from a processor to hardware logic. The
block receives data sent with a Register Write block from the processor. You can define the register
offset in the Memory Mapper tool.

Ports
Output

data — Data output
vector

This port outputs the data vector received from the processor, starting at the offset address from the
base address of the IP core. Set the offset address in the Memory Mapper tool.
Data Types: single | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed point

Parameters
Register name — Name of register
RegA (default) | character vector

Match this name to the Register name parameter specified in the Register Write block.
Example: AddressReg1

Output data type — Data type of output data
uint16 (default) | single | int8 | uint8 | int16 | int32 | uint32 | boolean | fixed point
data type

Select the data type for the output data. This value must match the value selected for the Register
Write block.

Output vector size — Vector size of output data
1 (default) | positive integer

Specify the vector size of the output data as a positive integer. This value must match the value
selected for the Register Write block.

Sample time — Simulation interval of sampling
-1 (default) | nonnegative scalar

1 Blocks

1-62

Specify a discrete time interval, in seconds, at which the block outputs data. If this value is -1
(default), the sample time is inherited from the model.

Extended Capabilities
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

To automatically generate HDL code for your design, and execute on an SoC device, use the SoC
Builder tool. See “Generate SoC Design”.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Register Channel | Register Write

Introduced in R2020a

 IP Core Register Read

1-63

Memory Channel
Stream data through a memory channel
Library: SoC Blockset / Memory

Description
The Memory Channel block streams data through external memory. Conceptually, it models data
transfer between one algorithm and another, through shared memory. The algorithm can be hardware
logic (HW), a processor model, or I/O devices. The writer algorithm requests access to memory from
the Memory Controller block. After access is granted the writer algorithm writes to a memory buffer.
In the model, the data storage is modeled as buffers in the channel. When deploying on hardware, the
data is routed to an external shared memory.

This block can be configured to support any of these protocols:

• AXI4-Stream to Software via DMA – Model a connection between hardware logic and a
software task through external memory. The writer puts data into the channel using a
MathWorks® simplified AXI stream protocol and the reader (processor) gets data from a DMA
driver interface. The channel models the datapath and software stack of that connection including
a FIFO, DMA engine, interconnect and external memory, interrupts, kernel buffer management of
the DMA driver, and data transfers to the software task. For more information about MathWorks
simplified AXI stream protocol, see “AXI4-Stream Interface”.

This image is a conceptual view of a Memory Channel block, streaming data from an FPGA
algorithm to a processor algorithm.

1 Blocks

1-64

• Software to AXI4-Stream via DMA – Model a connection between hardware logic and a
software task through external memory. The writer (processor) streams data into the channel via a
DMA driver using a MathWorks simplified AXI stream protocol. The channel models the datapath
and software stack of that connection including a FIFO, DMA engine, interconnect and external
memory, interrupts, kernel buffer management of the DMA driver, and data transfers from the
software task. For more information about the MathWorks simplified AXI stream protocol, see
“AXI4-Stream Interface”.

This image is a conceptual view of a Memory Channel block, streaming data from a processor
algorithm to an FPGA algorithm.

• AXI4-Stream FIFO – Model a connection between two FPGA algorithms through external
memory. The writer puts data into the channel as a master using the MathWorks simplified AXI
stream protocol and the reader receives data from the channel as a slave using the same protocol.

 Memory Channel

1-65

The channel behaves as a first in first out (FIFO) memory. The channel models the datapath of the
connection. The Memory Channel block includes an intermediate burst-level FIFO, DMA engine,
interconnect, and external memory. The external memory itself is managed as a circular buffer,
where a buffer must be written before it can be read. For more information about the MathWorks
simplified AXI stream protocol, see “AXI4-Stream Interface”.

This image is a conceptual view of a Memory Channel block, streaming data from one FPGA
algorithm to another FPGA algorithm.

• AXI4-Stream Video FIFO – Model a connection between two hardware algorithms through
external memory. This channel structure is similar to the AXI4 Stream FIFO configuration, but
the writer and reader are using the MathWorks streaming pixel protocol, along with a back-
pressure signal. For more information, see “AXI4-Stream Video Interface”.

• AXI4-Stream Video Frame Buffer – Model a connection between two hardware algorithms
through external memory, using full video frame buffers. The protocol is the MathWorks streaming
pixel protocol with back pressure. Also, the reader can ensure that the frame buffer is
synchronized with downstream video timings by asserting an FSYNC protocol signal. The datapath
includes a Video-DMA (VDMA) engine and the external memory buffers are managed as a circular
buffer of full video frames. The channel structure is identical to the structure of AXI4 Stream
FIFO channel type.

• AXI4-Random Access – Model a connection between two hardware algorithms through external
memory, using the MathWorks simplified AXI4-Master protocol. Both the writer and the reader are
masters, the channel is a slave in both cases. The external memory is unmanaged (there are no
logical buffers, and no circular buffer). It is up to the reader and writer to coordinate timing on
accesses to ensure the integrity of the data. For more information, see “Simplified AXI4 Master
Interface”.

This image is a conceptual view of a Memory Channel block, with random-access to the memory
for writing, and random-access to the memory for reading.

1 Blocks

1-66

For more information on the available protocols, see “External Memory Channel Protocols”.

Ports
Input

wrData — Writer data bus signal
scalar | vector | matrix

This signal contains the data to the memory.

Note When the Channel type parameter is set to Software to AXI4-Stream via DMA, this port
receives the input data, as a message, from the connected Stream Write block. For more information
on messages, see “Messages”.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | SoCData

wrCtrlIn — Writer input control signal
bus

This port represents the protocol from the data producer to the memory channel. The Memory
Channel block checks this signal when using wrData. The signals on the bus depend on the Channel
type parameter. Use the SoC Bus Creator block to create this control bus. For more information
about bus types, see “External Memory Channel Protocols”.

 Memory Channel

1-67

Channel Type Configuration Bus Type
AXI4-Stream to Software via DMA StreamM2SBusObj
AXI4 Stream FIFO StreamM2SBusObj
AXI4 Stream Video FIFO pixelcontrol
AXI4 Stream Video Frame Buffer pixelcontrol
AXI4 Random Access WriteControlM2SBusObj

Dependencies

To enable this port, set the Channel type parameter to a value other than Software to AXI4-
Stream via DMA.
Data Types: StreamM2SBusObj | pixelcontrol | WritecontrolM2SBusObj

rdCtrlIn — Reader input control signal
bus

This port accepts a bus from a data consumer block, signaling that the consumer block is ready to
accept read data. For streaming protocols, the rdCtrlIn port is a backpressure signal from a data
consumer to the Memory Channel block. For the AXI4 Random Access protocol, this input is a
read-request from the reader. The signals on the bus depend on the Channel type parameter. Use
the SoC Bus Creator block to create this control bus.

Channel Type Configuration Bus Type
Software to AXI4-Stream via DMA StreamS2MBusObj
AXI4 Stream FIFO StreamS2MBusObj
AXI4 Stream Video FIFO StreamVideoS2MBusObj
AXI4 Stream Video Frame Buffer StreamVideoFSyncS2MBusObj
AXI4 Random Access ReadControlM2SBusObj

Dependencies

To enable this port, set the Channel type parameter to a value other than AXI4-Stream to
Software via DMA.
Data Types: StreamS2MBusObj | StreamVideoS2MBusObj | StreamVideoFSyncS2MBusObj |
ReadControlM2SBusObj

rdDone — Notification message of completed read
scalar

This message port receives a notification from the connected Stream Read block. The notification
indicates that a read transaction completed. For more information on messages, see “Messages”.

Dependencies

To enable this port, set the Channel type parameter to AXI4-Stream to Software via DMA.
Data Types: Boolean

wrBurstDone — Writer control input from memory controller
scalar

1 Blocks

1-68

This message port receives control messages from a connected Memory Controller block that the
requested burst transaction completed. Connect the burstDone output signal from the Memory
Controller block to this port. For more information on messages, see “Messages”.
Data Types: BurstRequest2BusObj

rdBurstDone — Reader control input from memory controller
scalar

This message port receives control messages from a connected Memory Controller block that the
requested burst transaction completed. Connect the burstDone output signal from the Memory
Controller block to this port. For more information on messages, see “Messages”.
Data Types: BurstRequest2BusObj

Output

rdData — Output data signal to data consumer
scalar | vector | matrix

This signal contains the data read from the memory.

Note When the Channel type parameter is set to AXI4-Stream to Software via DMA, this port
sends the output data, as a message, to the connected Stream Read block. For more information on
messages, see “Messages”.

Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point | SoCData

rdEvent — Task read event signal
scalar

This port sends a task event signal that triggers the Task Manager block to execute the associated
event-driven read.

Dependencies

To enable this port, set the Channel type parameter to AXI4-Stream to Software via DMA.
Data Types: rteEvent

wrEvent — Task write event signal
scalar

This port sends a task event signal that triggers the Task Manager block to execute the associated
event-driven write.

Dependencies

To enable this port, set the Channel type parameter to Software to AXI4-Stream via DMA.
Data Types: rteEvent

wrDone — Notification of freed buffer in memory
scalar

 Memory Channel

1-69

This message port sends a notification to the connected Stream Write block. This notification
indicates that a read transaction completed, and that a buffer in memory is available for writing.
Dependencies

To enable this port, set the Channel type parameter to Software to AXI4-Stream via DMA.
Data Types: Boolean

rdCtrlOut — Reader control signal from memory channel to data consumer
bus

Control signal from channel to data consumer. The contents of this signal depend on the Channel
type parameter. Connect this signal to the data consumer. Use the SoC Bus Selector block to
separate the signal from the bus.

Channel Type Configuration Bus Type
Software to AXI4-Stream via DMA StreamM2SBusObj
AXI4 Stream FIFO StreamM2SBusObj
AXI4 Stream Video FIFO pixelcontrol
AXI4 Stream Video Frame Buffer pixelcontrol
AXI4 Random Access ReadControlS2MBusObj

Dependencies

To enable this port, set the Channel type parameter to a value other than AXI4-Stream to
Software via DMA.
Data Types: StreamM2SBusObj | ReadControlS2MBusObj | pixelcontrol

wrCtrlOut — Writer control signal from memory channel to data producer
bus

This bus represents the protocol bus from the memory channel to the data producer. The signals on
the bus depend on the Channel type parameter. Use the SoC Bus Selector block to separate the
signal from the bus.

Channel Type Configuration Bus Type
AXI4-Stream to Software via DMA StreamS2MBusObj
AXI4 Stream FIFO StreamS2MBusObj
AXI4 Stream Video FIFO StreamVideoS2MBusObj
AXI4 Stream Video Frame Buffer StreamVideoS2MBusObj
AXI4 Random Access WriteControlS2MBusObj

Dependencies

To enable this port, set the Channel type parameter to a value other than Software to AXI4-
Stream via DMA.
Data Types: StreamS2MBusObj | WriteControlS2MBusObj | StreamVideoS2MBusObj

wrBurstReq — Write burst request
scalar

1 Blocks

1-70

This message port sends control signal requesting burst access from the memory controller. Connect
it to the burstReq input of the Memory Controller block. For more information on messages, see
“Messages”.
Data Types: BurstRequestBusObj

rdBurstReq — Read burst request
scalar

This message port sends control signal requesting burst access from the memory controller. Connect
it to the burstReq input of the Memory Controller block. For more information on messages, see
“Messages”.
Data Types: BurstRequestBusObj

Parameters
Hardware board — View or modify current hardware settings
name of selected hardware board

This property is read-only.

This parameter shows a link to the currently selected hardware board. Click the link to open the
configuration parameters, and adjust the settings, or choose a different board.

To learn more about configuration parameters, see “FPGA design (mem channels)” on page 2-6.

Show implementation info — View channel information
text window

This property is read-only.

This parameter shows a link to the implementation information specific to the model. Click the link to
view the information (opens in new window).

Main

Channel type — Choose channel protocol
AXI4-Stream FIFO (default) | AXI4-Stream to Software via DMA | Software to AXI4-
Stream via DMA | AXI4-Stream Video FIFO | AXI4-Stream Video Frame Buffer | AXI4
Random Access

Specify the protocol for the channel. Choose one of the following values:

• AXI4-Stream to Software via DMA
• Software to AXI4-Stream via DMA
• AXI4 Stream FIFO
• AXI4 Stream Video FIFO
• AXI4 Stream Video Frame Buffer
• AXI4 Random Access

For additional information about memory channel protocols, see “External Memory Channel
Protocols”.

 Memory Channel

1-71

Region size (bytes) — Size of memory allocated for region, in bytes
calculated

This property is read-only.

The size in bytes of the region. This value is calculated as the number of buffers multiplied by buffer
size.
Example: If Buffer size is 1024, and the number of buffers is set to 8, then Region size is 8192.

Buffer size (bytes) — Size of buffer, in bytes
1024 (default) | scalar

Specify the size in bytes of each buffer in the region.

The following rules apply when setting burst and buffer sizes.

1 The Burst Length of a given channel interface, calculated in bytes, must be less than 4096 bytes.
To calculate the burst size in bytes, the channel interface scalar datatype is converted to bytes
and then multiplied by the Burst Length.

2 The Burst Length can be set above 256, but will warn if generating to an AXI-based target
platform. AXI-based memory systems have a maximum burst length of 256.

3 The Channel Length must be an integer multiple of burst length or the burst length must be an
integer multiple of channel length. That is, it must be possible to either chunk the incoming
channel data to a whole number of bursts or to gather a whole number of incoming channel data
to a single burst.

4 The Buffer Size must be a whole number of bursts. This must be true for both the writer’s burst
size (after conversion of its Burst Length to bytes) and the reader’s burst size (after conversion of
its Burst Length to bytes).

5 The calculated number of bursts in a buffer must not exceed 5000. This is a temporary restriction
based on the event processing internal to the memory model. This can happen with shared
memory regions that have large buffer sizes (such as for 1080p video frames) and channel
interfaces that specify smaller burst sizes. Generally, with larger frames, bursts sizes near the
4096 byte limit must be used.

6 The scalar datatype of the channel interface as converted to a flattened channel data width (i.e.
tdata in the implementation) cannot exceed 128 bits.

The following table provides examples of good and bad parameter sets.

1 Blocks

1-72

Burst and Buffer parameter examples

Channel
Datatype

Channel
Dimension
s

Burst
Length

Burst
Size

Good /
Bad

Why?

uint8 [1 1] 1024 2048 Good This is a simple 8-bit data transaction.
uint8 [1 3] 1024 4096 Good This might represent an RGB pixel from a

Vision HDL Toolbox block. It is converted to
24-bit packed data and padded with 8 bits to
become a 32-bit (4-Byte) tdata bus to the
memory. The Burst size is 1024*4B = 4096B.

fixdt(0,10,0) [1 3] 1024 4096 Good This is converted to a 30-bit packed pixel with
2 bits of padding.

fixdt(0,12,0) [1 3] 1024 8192 Good This results in a 36-bit packed pixel which
extends to 64-bit tdata. This data is compliant
with the current limit of 128-bit tdata.

fixdt(0,48,0) [1 3] 1024 8192 Bad This results in a 144-bit packed pixel violates
the current limit of 128-bit tdata.

uint8 [120 160 3] 1024 4096 Bad The scalar data is 24-bit, padded to a 32-bit
tdata. The Channel Length is 120*160=19200.
The burst length of 1024 does not evenly
divide 19200.

uint8 [120 160 3] 120 480 Good The scalar data is 24-bit, padded to a 32-bit
tdata. The Channel Length is 120*160, and
since the burst length is 120, Channel length
is 160 bursts in size. The buffer size is exactly
1 frame (120*160*4) as calculated in bytes.

Number of buffers — Number of buffers in region
8 (default) | integer

Divide the region into buffers. A disparate rate between a reader and a writer slows down the faster
device. For example, a slow reader causes the writer to run out of buffers and block the writer,
effectively slowing down to the reader rate. Likewise, a slow writer causes the reader to run out of
buffers and block the reader, effectively slowing it down to the writer rate.

• Specifying 1 – With a single buffer, access is controlled to ensure that a buffer is written, then it is
read, then the next buffer is written, and so on.

• Specifying 2: With two buffers, memory access switches in a back-and-forth pattern. The writer
writes the first buffer, then, while the reader is reading it, the writer can write the second buffer.

• Specifying N – With N buffers, the memory access has a ring-buffer pattern. The writer can
continually write as long as buffers are available. When a buffer is completed, it becomes available
for the reader. The writer and reader traverse the N buffers in a circular pattern. As long as the
writer and reader maintain similar rates, the buffering prevents blockage.

Limitations

When you set the Channel type parameter to AXI4-Stream to Software via DMA or Software
to AXI4-Stream via DMA, the Number of buffers parameter must be an integer from 3 to 64.

 Memory Channel

1-73

Advanced

Burst length — Burst length for memory transactions
1 (default) | scalar

The length of bursts for this connection on the memory bus in units of scalar data. The scalar unit is
the packed data type. Specify the burst size for both Writer and Reader access to the channel.

The channel data is always transferred to the memory model using burst transactions, regardless of
the channel-type. For the AXI4 configuration, the algorithm-logic is responsible for defining the burst
through the protocol signals.

For the streaming data configurations, the Burst Length parameter determines the burst size to the
memory, and the channel data signal defines the size of each transfer on the interface.

When setting burst length, you must consider the “Buffer size (bytes)” on page 1-0 parameter.
Dependencies

• This parameter is not visible when the Channel type parameter is set to AXI4 Random Access.
• The writer Burst length parameter is not visible when the Channel Type parameter is set to

Software to AXI4-Stream via DMA
• The reader Burst length parameter is not visible when the Channel Type parameter is set to

AXI4-Stream to Software via DMA

Use hardware board settings — Use the Hardware Implementation settings from the
configuration parameters
on (default) | off

To use the same model-wide setting as in configuration parameters, select this box. Clear the box to
customize the setting for this channel. When using channel-specific settings, values are still checked
against hardware-specific constraints. For setting these values in the configuration parameters, see
“FPGA design (mem channels)” on page 2-24.
Dependencies

This parameter is not visible when Channel type is set to AXI4 Random Access.

Reader/Writer use same values — Reader and writer use the same values
on (default) | off

Select this box to use the same interconnect setting for the reader and the writer of this channel.
Clear the box to customize different settings for the reader and the writer. Clearing the Reader/
Writer use same values allows you to enter a value for the writer side and a value for the reader
side, for the following parameters:

• FIFO depth (number of bursts)
• Almost-full depth
• Clock Frequency (MHz)
• Data width (bits)

Dependencies

This parameter is visible when Channel type is set to AXI4-Stream FIFO, AXI4-Stream Video
FIFO, or AXI4-Stream Video Frame Buffer.

1 Blocks

1-74

FIFO depth (number of bursts) — Depth of FIFO for data
12 (default) | scalar

Specify depth of data FIFO, in units of bursts. When the writer has no buffers to write to, the FIFO
can absorb data until a buffer becomes available. This value is the maximum number of bursts that
can be buffered before data gets dropped.

Dependencies

• To enable this parameter, clear the Use hardware board settings check box.
• When Reader/Writer use same values is cleared, there are two text boxes: one for Writer and

one for Reader.
• This parameter is not visible when the Channel type parameter is set to AXI4 Random Access.
• The writer FIFO depth parameter is not visible when the Channel Type parameter is set to

Software to AXI4-Stream via DMA
• The reader FIFO depth parameter is not visible when the Channel Type parameter is set to

AXI4-Stream to Software via DMA

Almost full depth — Depth of FIFO when backpressure is asserted
8 (default) | scalar

Specify a number that asserts a backpressure signal from the channel to the data source. To avoid
dropping data, set a high watermark, allowing the data producer enough time to react to
backpressure. This number must be smaller than the FIFO depth.

Dependencies

• To enable this parameter, clear the Use hardware board settings check box.
• When Reader/Writer use same values is cleared, there are two text boxes: one for Writer and

one for Reader.
• This parameter is not visible when the Channel type parameter is set to AXI4 Random Access.
• The writer Almost full depth parameter is not visible when the Channel Type parameter is set

to Software to AXI4-Stream via DMA
• The reader Almost full depth parameter is not visible when the Channel Type parameter is set

to AXI4-Stream to Software via DMA

Clock frequency (MHz) — Interconnect frequency of master datapath
100 (default)

Frequency of the master datapath to the interconnect controller in MHz.

Dependencies

• To enable this parameter, clear the Use hardware board settings check box.
• When Reader/Writer use same values is cleared, there are two text boxes: one for Writer and

one for Reader.
• This parameter is not visible when the Channel type parameter is set to AXI4 Random Access.
• The writer Clock frequency (MHz) parameter is not visible when the Channel Type parameter

is set to Software to AXI4-Stream via DMA
• The reader Clock frequency (MHz) parameter is not visible when the Channel Type parameter

is set to AXI4-Stream to Software via DMA

 Memory Channel

1-75

Data width (bits) — Data width of master datapath
64 (default) | scalar

Data width of master datapath to interconnect controller in bits.

Dependencies

• To enable this parameter, clear the Use hardware board settings check box.
• When Reader/Writer use same values is cleared, there are two text boxes: one for Writer and

one for Reader.
• When the Channel type parameter is set to AXI4 Random Access, the Data width (bits)

parameter is set to the bit width corresponding to the Data type parameter, and the Enable
sample packing parameter.

• The writer Data width (bits) parameter is not visible when the Channel Type parameter is set to
Software to AXI4-Stream via DMA

• The reader Data width (bits) parameter is not visible when the Channel Type parameter is set
to AXI4-Stream to Software via DMA

Signal Attributes

Write data signal

Dimensions — Dimensions of input data signal
scalar | array

wrData can be a multidimensional array. Specify the dimension for the array as a whole number.

When Channel type is set to Software to AXI4-Stream via DMA, the Dimensions parameter
must be scalar.
Example: 1 – a scalar sample.
Example: [10 1] – a vector of ten scalars.
Example: [1080 1920 3] – a 1080p frame. The frame includes 1080 lines of 1920 pixels per line, and
each pixel is represented by three values (for red, green and blue).

Data type — Data type of writer data
double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | boolean | fixed point

Specify the data type of the wrData port. For help, click the ... button. This expands the menu and
shows a Data Type Assistant.

When the Channel type parameter is set to Software to AXI4-Stream via DMA, the data type
must be set to uint16, uint32, uint64, or fixdt(0,128,0).

Sample time — Time interval of sampling
1 (default) | positive scalar

Specify a discrete time at which the block accepts input data, in seconds.

Dependencies

This parameter is not visible when the Channel type parameter is set to Software to AXI4-
Stream via DMA.

1 Blocks

1-76

Enable sample packing (last signal dimension as channel) — Pack data on the last
dimension of the signal
off (default) | on

Select this parameter to enable data packing across the last dimension of the signal. The Memory
Channel block packs the data along the last dimension of the signal. For example, if the channel data
type is uint32, the dimensions are [1024 4], and if you select this parameter, then the memory
channel generates 1024 read or write transactions of 128 bits. For this example, if you clear this
sample packing parameter, the memory channel generates 4096 transactions of 32 bits each.

This figure shows how data is aligned for a signal with data type fixdt10[4x3]. When the data is
packed, three 10-bit words are concatenated and extended by 2 bits to a 32-bit sample. When the
data is not packed, each 10-bit word is extended to a 16-bit sample.

This figure shows how data is aligned for a signal with data type uint8[8x3]. When the data is
packed, three 8-bit words are concatenated and extended by 8 bits to a 32-bit sample. When the data
is not packed, each 8-bit word is represented as an 8-bit sample.

The combined width of the flattened signal must not exceed 512 bits.
Dependencies

This parameter is not visible when the Channel type parameter is set to Software to AXI4-
Stream via DMA.

Read data signal

Output data signal matches input — Reader and writer use the same values
on (default) | off

Select this box to use the same dimensions and data type for the reader and the writer of this
channel. Clear the box to customize different settings for the reader and the writer. Clear the box to
customize different dimensions and data type for the reader and writer interfaces.

Dimensions — Dimensions of output data signal
scalar | array

rdData can be a multidimensional array. Specify the dimension for the array as a whole number.

 Memory Channel

1-77

When Channel type is set to AXI4-Stream to Software via DMA, the Dimensions parameter
must be scalar.
Example: 1 – a scalar sample.
Example: [10 1] – a vector of ten scalars.
Example: [1080 1920 3] – a 1080p frame. The frame includes 1080 lines of 1920 pixels per line, and
each pixel is represented by three values (for red, green and blue).

Dependencies

To enable this parameter, clear the Output data signal matches input check box.

Data type — Data type of reader data
double | single | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 | boolean | fixed point

Specify the data type of the rdData port. For help, click the ... button. This expands the menu and
shows a Data Type Assistant.

When the Channel type parameter is set to AXI4-Stream to Software via DMA, the data type
must be set to uint16, uint32, uint64, or fixdt(0,128,0).

Dependencies

To enable this parameter, clear the Output data signal matches input check box.

Sample time — Time interval of sampling
1 (default) | positive scalar

Specify a discrete time at which the block accepts input data, in seconds.

Dependencies

To enable this parameter, do one of the following:

• Set Channel type as Software to AXI4-stream via DMA.
• Set Channel type as AXI4 Random Access and clear the Output data signal matches input

check box.

Enable sample packing (last signal dimension as channel) — Pack data on the last
dimension of the signal
off (default) | on

Select this parameter to enable data packing across the last dimension of the signal. The Memory
Channel block packs the data along the last dimension of the signal. For example, if the channel data
type is uint32, the dimensions are [1024 4], and if you select this parameter, then the memory
channel generates 1024 read or write transactions of 128 bits. For this example, if you clear this
sample packing parameter, the memory channel generates 4096 transactions of 32 bits each.

This figure shows how data is aligned for a signal with data type fixdt10[4x3]. When the data is
packed, three 10-bit words are concatenated and extended by 2 bits to a 32-bit sample. When the
data is not packed, each 10-bit word is extended to a 16-bit sample.

1 Blocks

1-78

This figure shows how data is aligned for a signal with data type uint8[8x3]. When the data is
packed, three 8-bit words are concatenated and extended by 8 bits to a 32-bit sample. When the data
is not packed, each 8-bit word is represented as an 8-bit sample.

The combined width of the flattened signal must not exceed 512 bits.

Dependencies

To enable this parameter, clear Output data signal matches input check box, and set Channel
type to a value other than AXI4-Stream to Software via DMA.

Use pixel clock sample times — Use the pixel clock sample time
on (default) | off

Select this box to use the pixel clock sample time. To use the pixel clock sample time, you must use
scalar pixel dimensions. It is only relevant when streaming pixels. If both the reader and the writer
are streaming frames, you get an error when checking this box.

Note If both reader and writer are using framed signals, the signal dimensions are not scalar and
pixel timing cannot be inferred. Selecting Use pixel clock sample times in this case creates an
error.

Dependencies

To enable this parameter, set Channel type to AXI4-Stream Video FIFO or AXI4-Stream Video
Frame Buffer.

Frame size — Frame dimensions
480p SDTV (720x480p) (default) | ...

For video-streaming applications, Frame size can often be inferred, and this parameter shows as a
read-only value. When it cannot be inferred, select the Frame size from a drop-down menu.

• When the reader or the writer are using framed signals of a frame with known porch and blanking
timings, the Frame size is inferred from those timings. When the reader or the writer is a scalar

 Memory Channel

1-79

and the other is a non-standard frame size, the Frame size cannot be inferred and you get an
error.

• When Channel type is set to AXI4-Stream Video Frame Buffer and both reader and writer
are using scalar dimensions for pixel streams, Frame size is inferred from BufferSize and TDATA
and it is then a read-only value.

• When Channel type is set to AXI4-Stream Video FIFO and both reader and writer are using
scalar dimensions for pixel streams, select the Frame size as one of these values:

• 160x120p
• 480p SDTV (720x480p)
• 576p SDTV (720x576p)
• 720p HDTV (1280x720p)
• 1080p HDTV (1920x1080p)
• 320x240p
• 640x480p
• 800x600p
• 1024x768p
• 1280x768p
• 1280x1024p
• 1360x768p
• 1400x1050p
• 1600x1200p
• 1680x1050p
• 1920x1200p
• 16x12p (test mode)

Dependencies

To enable this parameter, set Channel type to AXI4-Stream Video FIFO or AXI4-Stream Video
Frame Buffer, and select Use pixel clock sample times.

Performance

Launch performance plots — Display performance metrics
button

Clicking the button opens Performance plots for the memory channel in a new window. For more
information about performance graphs, see “Simulation Diagnostics”.

Extended Capabilities
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

To automatically generate HDL code for your design, and execute on an SoC device, use the SoC
Builder tool. See “Generate SoC Design”.

1 Blocks

1-80

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Interrupt Channel | Memory Controller | Memory Traffic Generator

Topics
“External Memory Channel Protocols”

Introduced in R2019a

 Memory Channel

1-81

Memory Controller
Arbitrate memory transactions for one or more Memory Channel blocks
Library: SoC Blockset / Memory

Description
The Memory Controller block arbitrates between masters and grants them unique access to shared
memory. Configure this block to support multiple channels with various arbitration protocols. The
Memory Controller block is also instrumented to log and display performance data, enabling you to
debug and understand the performance of your system at simulation time.

The following image shows the implementation of the Memory Controller block.

The numbers in the image represent different latency stages of the block.

1 A burst-request enters the block.
2 The request may be delayed by arbitration until it is granted access to the bus. Set the

arbitration policy in “Interconnect arbitration” on page 1-0 .

1 Blocks

1-82

3 If your model requires an additional delay before the first transfer starts, set that value in
“Request to first transfer (in clocks)” on page 1-0 .

4 The burst execution latency is calculated by the burst size, the data-width, the clock frequency,
and the “Bandwidth derating (%)” on page 2-22 value.

5 If your model requires a delay from burst completion until a burst response is issued to the
channel, set that value in “Last transfer to transaction complete (in clocks)” on page 1-0 .

The memory controller has an internal state, which is visible when using a Logic Analyzer to view
simulation and execution metrics. The state values are:

• BurstRequest: A burst request enters the block.
• BurstExecuting: A burst is executing.
• BurstDone: A burst is done executing.
• BurstComplete: The burst is complete and the burstDone signal is sent to the master.

For information about visualizing memory controller latencies, see “Memory Controller Latency
Plots”.

Limitations
• When Interconnect arbitration is set to Round Robin, the model does not support simulation

stepping. For more information on simulation stepping, see “Simulation Stepper”.

Ports
Input

burstReqN — Request for memory access
scalar

This port receives requests for memory access as messages. Connect this input port to one of the
burst request message ports (wrBurstReq or rdBurstReq) from a Memory Channel or Memory
Traffic Generator block. For more information on messages, see “Messages”.

The number of burstReqN input ports is defined by the Number of masters parameter. burstReqN
represents the Nth input port.
Data Types: BurstRequest2BusObj

Output

burstDoneN — Signal toward master
scalar

After a master is granted access to the memory and the burst transaction has completed, this port
sends a message that the transaction completed. Memory access is then given to the next master
according to the arbitration scheme. For more information on messages, see “Messages”.

The number of burstDoneN output ports is defined by the Number of masters parameter.
burstDoneN represents the Nth input port
Data Types: BurstRequest2BusObj

 Memory Controller

1-83

Parameters
Hardware board — View or modify current hardware settings
name of current hardware board

This property is read-only.

This parameter shows a link to the selected hardware board. Click the link to open the configuration
parameters, and adjust the settings or choose a different board.

To learn more about configuration parameters for the memory controller, see “FPGA design (mem
controllers)” on page 2-5.

Main

Number of masters — Number of masters connected to this controller
2 (default) | positive integer

Set this parameter to generate the interface accordingly, and specify how many masters connect to
the memory.

Advanced

Interconnect arbitration — Arbitration policy
Round robin (default) | Fixed port priority

Set the arbitration policy for the memory-interconnect block. When multiple masters request for
memory access, the policy is determined by the value of this parameter.

• Round robin sets a fair arbitration based on last service time.
• Fixed port priority sets a fixed priority of burstReq1, burstReq2, burstReq3, and so on,

where burstReq1 gets the highest priority.

Use hardware board settings — Use hardware implementation settings from the
configuration parameters
off (default) | on

Select this parameter to use the same model-wide settings as set in the configuration parameters.
Clear this parameter to customize the settings for this memory controller. When using customized
settings, values are still checked against hardware-specific constraints. For more information, see
“FPGA design (mem controllers)” on page 2-22.

Bandwidth — Bandwidth for transactions towards external memory
scalar

This property is read-only.

This value shows the calculated bandwidth between the memory controller and the external memory.
It is calculated as Frequency (MHz) multiplied by Data width (bits).

Frequency (MHz) — Controller clock frequency, in MHz
200 (default) | scalar

1 Blocks

1-84

The clock rate of the bus used to drive interactions with the external memory. The controller
frequency determines the overall system bandwidth for external memory that must be shared among
all the masters in the model.

Dependencies

To enable this parameter, clear the Use hardware board settings parameter.

Data width (bits) — Bit width of datapath
64 (default) | positive integer

Set the width, in bits, of the datapath between the memory controller and the memory interconnect.

Dependencies

To enable this parameter, clear the Use hardware board settings parameter.

Bandwidth derating (%) — Memory transaction inefficiencies
0-100

Model memory transaction inefficiencies specified by a derating percentage value. For every 100
clocks, memory transaction execution is paused for the number of clocks equal to Bandwidth
derating. To set this parameter, measure the maximum bandwidth on your board and reflect the
bandwidth derating from your board in this parameter. See an example in “Analyze Memory
Bandwidth Using Traffic Generators”.

Dependencies

To enable this parameter, clear the Use hardware board settings parameter.

Request to first transfer (in clocks) — Number of clock cycles between request and
start of transfer
nonnegative integer

Specify the delay, in clock cycles, between a read or write request and the start of a transfer. Specify
nonnegative integer values in both Write and Read boxes.

This delay is the number of clock cycles between making a request to the memory controller and until
it returns a response. It is reflected in the Logic Analyzer waveforms as the time that the memory
controller state remains as BurstAccepted. For more information about viewing waveforms in
simulation, see “Buffer and Burst Waveforms”.

To set this value, measure the clock cycles between the burst-request and start of transfer on your
board. For instructions for extracting this information from a hardware execution, see “Configuring
and Querying the AXI Interconnect Monitor”.

Dependencies

To enable this parameter, clear the Use hardware board settings parameter.

Last transfer to transaction complete (in clocks) — Number of clock cycles
between the end of transfer and completion of transaction
nonnegative integer

Specify the delay in clock cycles between the end of a memory transfer and the end of a transaction.
Specify nonnegative integer values in both Write and Read boxes.

 Memory Controller

1-85

To set this value, measure the clock cycles between the end of the burst and the completion of the
transaction on your board. For instructions for extracting this information from a hardware execution,
see “Configuring and Querying the AXI Interconnect Monitor”.

Dependencies

To enable this parameter, clear the Use hardware board settings parameter.

Performance

Click Launch performance app to open the Performance Metrics window. For additional
information, see “Simulation Performance Plots”.

Extended Capabilities
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

To automatically generate HDL code for your design, and execute on an SoC device, use the SoC
Builder tool. See “Generate SoC Design”.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Memory Channel | Memory Traffic Generator | Register Channel

Topics
“External Memory Channel Protocols”

Introduced in R2019a

1 Blocks

1-86

Memory Traffic Generator
Generate traffic towards memory controller
Library: SoC Blockset / Memory

Description
When connected to a memory controller, the Memory Traffic Generator block generates read or write
requests to the memory, acting as a master. Use this block to model the impact that a master’s
memory accesses has on your algorithm without explicitly simulating the behavior of that master. You
can also use the Memory Traffic Generator block to characterize performance of your memory
subsystem under varying levels of memory access contention.

Note To model memory contention, the Memory Traffic Generator block gains memory access,
competes in arbitration, and releases access. The Memory Traffic Generator block does not actively
read or write from memory.

Ports
Input

burstDone — End of burst and access to memory
scalar

This message port receives control messages from a connected Memory Controller block that the
requested burst transaction completed. Connect the burstDone output signal from the Memory
Controller block to this port. For more information on messages, see “Messages”.
Data Types: BurstRequest2BusObj

Output

burstReq — Request memory access from memory controller
scalar

This message port sends a message requesting burst access from the memory controller. Connect this
port to the burstReq input port of the Memory Controller block. For more information on messages,
see “Messages”.
Data Types: BurstRequest2BusObj

Parameters
Request type — Choose between write or read request
Writer (default) | Reader

 Memory Traffic Generator

1-87

Choose between a write or read request type for the block to generate. Specify Writer or Reader,
respectively.

Total burst requests — Number of burst requests to generate
100 (default) | integer greater than 1

Generate recurring traffic patterns by setting this value to an integer greater than one.

Burst size (bytes) — Size of generated burst transactions
256 (default) | scalar

Specify the size of each burst transaction in bytes. This parameter, along with the width of the
datapath (as configured in the configuration parameters), controls the burst length.

For example, if burst size is 256 bytes, and the Memory Channel block is configured with Data width
(bits) set to 64 (8 bytes), then Burst length is calculated as 256/8 = 32.

Time between bursts (s) — Simulation time between burst requests
1e-6 (default) | time, in seconds

Specify simulation time between burst requests, in seconds.

Dependencies

To enable this parameter, clear the Allow simulation only parameters parameter.

Tip If you cleared Allow simulation only parameters and this parameter is not visible – click
Apply at the bottom of the Block Parameters dialog box.

Allow simulation only parameters — Configure additional parameters for simulation
only
on (default) | off

Select this parameter to enable configuration of simulation-only parameters.

First burst time — Simulation time for initial burst request
10e-6 (default) | time, in seconds

Specify simulation time, in seconds, for sending the initial burst request. This value must be a
positive real scalar.

Dependencies

To enable this parameter, select Allow simulation only parameters parameter.

Random time between bursts (s) — Range of simulation time for recurring requests
[1e-6 1e-6] (default) | vector of the form [min max]

Specify the range of simulation time between burst requests with a vector of the form [min max].

• min is the minimum time, in seconds, between recurring requests.
• max is the maximum time, in seconds, between recurring requests.

min and max must be nonnegative, and max must be greater than min.

1 Blocks

1-88

To specify a deterministic rate, set the minimum and maximum time between requests to the same
value. If you want reproducible randomization, specify a seed in the configuration parameters, on the
Hardware Implementation pane. For more information on setting the seed value, see “Task and
memory simulation” on page 2-4.

Dependencies

To enable this parameter, select the Allow simulation only parameters parameter.

Wait for burst done — Wait for burst-done signal before generating next request
off (default) | on

Select this parameter to wait for a burst-done signal from the previous burst before generating the
next burst request. Clear this parameter to generate burst requests regardless of other master traffic.
To get a known data rate, clear this parameter.

Enable assertion — Enable verbose information
off (default) | on

Select this parameter to view diagnostic messages when the Traffic Generator block drops a packet.
Clearing this parameter enhances simulation performance.

Extended Capabilities
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

To automatically generate HDL code for your design, and execute on an SoC device, use the SoC
Builder tool. See “Generate SoC Design”.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Memory Controller | Memory Channel | Register Channel

Introduced in R2019a

 Memory Traffic Generator

1-89

Register Channel
Timing model for transfer of register values
Library: SoC Blockset / Memory

Description
The Register Channel block provides a timing model for the transfer of register values between a
processor and hardware logic. The register channel represents the datapath between a processor and
a hardware IP via a common configuration bus. Configure the block to include one or more registers,
and configure the direction for each register as write if the processor writes to it, or read if the
processor reads from it.

Ports
Input

regN — Register input
scalar

Each register is assigned a port pair: an input and an output. You can configure the processor to be a
writer or a reader. If the register is a read register, then the input comes from the hardware (HW)
side. If the register is a write register, the input comes from the software (SW) side. By default, the
Nth register port is named regN. You can change a register name by clicking Edit in the Registers
parameter dialog box.
Dependencies

The number of input ports depends on the number of registers in the register table.

Output

regN — Register output
scalar

Each register is assigned a port pair: an input and an output. You can configure the processor to be a
writer or a reader. If the register is configured as a read register, then the output goes to the software
(SW) side. If the register is a write register, the output goes to the hardware (HW) side. By default,
the Nth register port is named regN. You can change a register name by clicking Edit in the
Registers parameter dialog box.
Dependencies

The number of output ports depends on the number of registers in the register table.

1 Blocks

1-90

Parameters
Registers — Edit register name, direction, data type, and dimension
table

This parameter includes a table, where each of its lines corresponds to a register in your IP. Edit the
table to add or edit a register configuration, up to 32 registers.

For each register, you can edit these values:

• Register Name – Specify the register name. This changes the input and output ports for this
register.

• Direction – Choose write if the processor writes the register. Choose read if the processor
reads the register.

• Data Type – Select the data type for the register. Supported data types are

• single
• int8
• uint8
• int16
• uint16
• int32
• int64
• uint32
• uint64
• boolean
• fixdt(1,16,0)
• fixdt(1,16,2^0,0)
• fixed point

• Dimension – Select the vector size of the register. The default value is 1.

Register write sample time — Sample time for register access
-1 (default) | two element vector

This sample time represents the clock period on the hardware side. Specify an offset time by entering
a two-element vector for discrete blocks or configurable subsystems. The first element is the sample
time, and the second element is the offset time. For example, an entry of [1.0 0.1] specifies a 1.0-
second sample time with a 0.1-second offset. If no offset is specified, the default offset is zero.

When the value is -1, the block inherits its sample time value from the model.

Note When the Direction of a register is set to Write, it implies that software is the writer and
hardware is the reader, but Register write sample time determines the sample time of the signal on
the hardware side.

 Register Channel

1-91

Extended Capabilities
HDL Code Generation
Generate Verilog and VHDL code for FPGA and ASIC designs using HDL Coder™.

To automatically generate HDL code for your design, and execute on an SoC device, use the SoC
Builder tool. See “Generate SoC Design”.

Fixed-Point Conversion
Design and simulate fixed-point systems using Fixed-Point Designer™.

See Also
Memory Controller | Memory Channel | Memory Traffic Generator

Topics
“Memory and Register Data Transfers”

Introduced in R2019a

1 Blocks

1-92

ADC Interface
Convert analog signal on ADC input pin to digital signal
Library: SoC Blockset / Peripherals

Description
The ADC Interface block simulates the analog-to-digital conversion (ADC) of a hardware board. The
input analog signal gets sampled and converted into a representative digital value. A start event
message signals the block to sample the input analog voltage signal. When the conversion completes,
the block emits the digital representation of the analog signal and sends an event to a Task Manager
block. At this point, a connected task can execute with the new ADC sample.

Ports
Input

start — Start analog to digital conversion
start an analog to digital conversion event

Specify an event signal to start the sampling and measurement of the analog input port signal.
Data Types: rteEvent

analog — Analog voltage signal
scalar

Specify an Input analog voltage signal to convert into a digital measurement.
Data Types: double | single

Output

digital — SoC message data
scalar

This port sends the ADC Interface input signal data as a message to the msg input port of the ADC
Read block.
Data Types: SoCData

event — Task event signal
scalar

This port sends a message at each analog to digital signal conversion event. This output connects to
the input of the Task Manager block to execute the associated event-driven task after executing the
ADC event.
Data Types: rteEvent

 ADC Interface

1-93

Parameters
Resolution (bits) — Resolution of digital measurement
12 (default) | 16

An input analog signal can be represented in digital values in the form of 12 or 16 bits. The minimum
value of an analog signal that can be represented in 1 bit is called resolution. One bit represents the
minimum voltage resolution measurable by the ADC. The minimum voltage resolution can be
determined using the following equation:

ΔVmin =
Vref

2n

where n is the Resolution (bits) and Vref is the Voltage reference (V) parameter values.
Example: 16

Voltage reference (V) — Reference voltage in ADC
3 (default) | 3.3

The reference voltage determines the total voltage range that the ADC can convert into a digital
value without saturating. Any voltage signal higher than this value produces the maximum possible
value that can represented by the Resolution (bits) parameter.
Example: 3.3

Acquisition time (s) — Time required for ADC to capture input voltage
320e-9 (default) | positive scalar

Specify the time required for the ADC to capture the input voltage during sampling.
Example: 200e-9

Conversion time (s) — Time to convert physical voltage sample to digital value
240e-9 (default) | positive scalar

Specify the required time to convert the physical voltage sample to the digital representation and
output the value.
Example: 20e-9

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

To automatically generate C code for your design, and execute on an SoC device, use the SoC
Builder tool. To generate and execute C code for your SoC models, Embedded Coder® features are
required. For more information on generating code for SoC designs, see “Generate SoC Design”.

Embedded Coder does not generate code for this block. In the generated code, the device I/O
connects directly to the TCP Write, UDP Write, or Register Write block.

See Also
ADC Read | PWM Interface | PWM Write

1 Blocks

1-94

Topics
“Get Started with SoC Blocks on MCUs”
“Integrate MCU Scheduling and Peripherals in Motor Control Application”

External Websites
https://en.wikipedia.org/wiki/Analog-to-digital_converter

Introduced in R2020b

 ADC Interface

1-95

https://en.wikipedia.org/wiki/Analog-to-digital_converter

PWM Interface
Simulate pulse width modulation (PWM) output from hardware
Library: SoC Blockset / Peripherals

Description
The PWM Interface block simulates the PWM output of a hardware board. This blocks gets duty cycle
data messages from a connected PWM Write block that can either generate a switching pulse-width-
modulated waveform or pass the duty cycle value to the output.

Ports
Input

msg — SoC message data
numeric vector

This port receives the duty cycle data from the msg port of a connected PWM Write block.
Data Types: SoCData

Output

PWM — Pulse-width-modulated signal
scalar

This port outputs the pulse-width-modulated rectangular wave defined by the dCycle input port.

Dependencies

To enable this port, set the Output mode parameter to Switching.
Data Types: double

1 Blocks

1-96

~PWM — Complimentary pulse-width-modulated signal
scalar

This port outputs the complimentary PWM signal.
Dependencies

To enable this port, set the Output mode parameter to Switching.
Data Types: double

dCycle — Analog approximation of pulse-width-modulated signal
scalar

This port emits the averaged value of the PWM waveform, which is a pass-through of the duty cycle
input value. This image shows the average output signal equivalent to the PWM output.

Dependencies

To enable this port, set the Output mode parameter to Average.
Data Types: double

event — Event emitted on each PWM cycle
scalar

This port sends a message during each PWM output event that can connect to the start port of the
ADC Interface block to synchronize ADC and PWM events in closed-loop systems.
Data Types: rteEvent

Parameters
Main

PWM waveform period (s) — Period of PWM waveform
50e-6 (default) | positive scalar

Specify the period of the PWM waveform in seconds.

Note For PWM waveform period (s) of 10ns, the duty cycle must be greater than 1%.

 PWM Interface

1-97

Output mode — Output mode
Switching (default) | Average

Simulate the output signal as either a true PWM waveform by specifying Switching or as the
average of the duty cycle by specifying Average.
Example: 50e-6

Counter mode — Counter waveform
Up-Down (default) | Up | Down

The counter mode specifies the shape of the underlying sawtooth waveform that drives the PWM
output signal inside the PWM module. In Up mode, the sawtooth counter increments to the maximum
and then resets to zero on each period. In Down mode, the sawtooth counter decrements to zero then
resets to the maximum. In Up-Down mode, the sawtooth counter oscillates from zero to the maximum
value.

Example: Up

Sampling mode — Sampling mode
End of PWM period (default) | Mid of PWM period | Mid or End of PWM period

Specify the time at which the input duty cycle is sampled.
Example: Mid or End of PWM period

Dead time (s) — Dead band switching delay
1e-6 (default) | positive scalar

A time delay is introduced between turning off one of the transistors of a leg of an inverter and
turning on the other transistor to ensure that a dead short circuit does not occur. This diagram shows
the expected duty cycle and the delay introduced by the transistor switching the dead band.

1 Blocks

1-98

Example: 450e-9

Event trigger mode — Trigger mode relative to PWM waveform
End of PWM period (default) | Mid of PWM period | Mid or End of PWM period | Compare
1 | Compare 2

Specify when this block triggers an event relative to the PWM waveform.

Example: Mid or End of PWM period

 PWM Interface

1-99

PWM Output

At position of period — Signal change at position in period
High | Low | Change | NoChange

Specify the state of the PWM waveform signal at the position in the waveform relative to the total
period. When set to High or Low, the waveform output changes to 1 or 0, respectively. When set to
Change, the waveform inverts the current value. When set to NoChange, the waveform does not
change. The position can either be the start or mid point of the PWM waveform. This table gives
the default settings for these parameters.

Parameter Default
At start of period High
At mid of period NoChange

Dependencies

At mid of period is only available when the Counter mode parameter is set to Up-Down.

At compare n — Signal change at comparator n trigger
High | Low | Change | NoChange

Specify the state of the PWM waveform signal when the internal PWM counter triggers comparator n.
When set to High or Low, the waveform output changes to 1 or 0, respectively. When set to Change,
the waveform inverts the current value. When set to NoChange, the waveform does not change. Two
comparators, 1 and 2, are available to modify the PWM signal. This table gives the default settings
for these parameters.

Parameter Default
At compare 1 Low
At compare 2 NoChange

Dependencies

At compare 1 and At compare 2 parameters are only available when the Counter mode parameter
is set to Up-Down.

At compare n direction count — Signal change at comparator n trigger
High | Low | Change | NoChange

Specify the state of the PWM waveform signal when the internal PWM counter crosses the
comparator n value in the specified direction. When set to High or Low, the waveform output
changes to 1 or 0, respectively. When set to Change, the waveform inverts the current value. When
set to NoChange, the waveform does not change. Two comparators, 1 and 2, are available to modify
the PWM signal. This table gives the default settings for these parameters.

Parameter Default
At compare 1 up count Low
At compare 1 down count High
At compare 2 up count NoChange

1 Blocks

1-100

Parameter Default
At compare 2 down count NoChange

Dependencies

These arguments are only available when the Counter mode parameter is set to Up-Down.

Phase

Phase offset in degree (0-360) — PWM waveform offset
scalar from 0 to 360

Specify the phase of the PWM waveform relative period of waveform. The phase is represented as a
scalar between 0 to 360 degrees.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

To automatically generate C code for your design, and execute on an SoC device, use the SoC
Builder tool. To generate and execute C code for your SoC models, Embedded Coder features are
required. For more information on generating code for SoC designs, see “Generate SoC Design”.

Embedded Coder does not generate code for this block. In the generated code, the device I/O
connects directly to the TCP Write, UDP Write, or Register Write block.

See Also
ADC Interface | PWM Write

Topics
“Get Started with SoC Blocks on MCUs”
“Integrate MCU Scheduling and Peripherals in Motor Control Application”

External Websites
https://en.wikipedia.org/wiki/Pulse-width_modulation

Introduced in R2020b

 PWM Interface

1-101

https://en.wikipedia.org/wiki/Pulse-width_modulation

Audio Capture Interface
Simulate capture of sample from audio stream on hardware
Library: SoC Blockset / Peripherals

Description
The Audio Capture Interface block simulates the behavior of an audio input device. The block outputs
audio samples as a message to a connected Audio Capture block that simulates audio driver code and
connects to your algorithm. The block can also emit an event that, when connected to a Task
Manager block, can trigger a task containing the Audio Capture block.

Ports
Input

data — Data frame from captured audio
M-element vector | M-by-C matrix

To provide a single audio channel, specify this data as an M-element audio data frame, where M
defines the number of samples of audio data per frame. To provide multiple audio channels provided,
specify data as an M-by-C matrix, where C defines the number of channels.

Dependencies

To enable this port, set the Input parameter to From input port.
Data Types: int8 | int16 | int32

Output

event — Task event signal
scalar

This port sends a message after a frame of audio samples is captured for all channels. This output
connects to the input of the Task Manager block to execute the associated event-driven task.

Dependencies

To enable this port, select the Show event port parameter.
Data Types: rteEvent

msg — SoC message data
scalar

This port outputs data messages containing audio data to a connected Audio Capture block.
Data Types: SoCData

1 Blocks

1-102

Parameters
Input — Source of simulated audio data
From dialog (default) | From input port | From timeseries object

Specify the source of the simulated audio data.

Value — Audio data to be output
int16([1 2 3 4 5 6 7 8]) (default) | CN-length vector

Specify the audio data as a CN-length vector representing the audio frames for all channels, where N
is the number of samples per frame and C is the number of audio channels. The samples for each
channel are contiguous.

Object name — Timeseries object
[] (default) | MATLAB workspace variable

Specify the audio data as a timeseries object defined in the MATLAB workspace.

Sample time — Sample time in seconds
-1 (default) | positive scalar

Enter the sample time defining the rate at which to output the message containing audio data.

Show event port — Option to enable task event ports
off (default) | on

Select this parameter to enable an event port that, when connected to the Task Manager block, can
execute event-driven tasks.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

To automatically generate C code for your design, and execute on an SoC device, use the SoC
Builder tool. To generate and execute C code for your SoC models, Embedded Coder features are
required. For more information on generating code for SoC designs, see “Generate SoC Design”.

Embedded Coder does not generate code for this block. In the generated code, the advanced Linux
sound architecture (ALSA) driver framework performs audio capture on the device. The related Audio
Capture block represents the ALSA driver. For more information on the ALSA driver framework, see
the Advanced Linux Sound Architecture website.

See Also
Peripheral Configuration | Task Mapping | Audio Capture | Audio Playback | Audio Playback Interface

External Websites
Advanced Linux Sound Architecture

Introduced in R2021a

 Audio Capture Interface

1-103

https://en.wikipedia.org/wiki/Advanced_Linux_Sound_Architecture
https://en.wikipedia.org/wiki/Advanced_Linux_Sound_Architecture

Audio Playback Interface
Simulate audio output device on a hardware board
Library: SoC Blockset / Peripherals

Description
The Audio Playback Interface block simulates the behavior of an audio output device. The block
receives audio samples as messages from a connected Audio Playback block that simulates audio
driver code connected to your algorithm.

Ports
Input

msg — SoC message data
vector

This port receives data messages containing audio data from a connected Audio Playback block.
Data Types: SoCData

Output

data — Audio data frame
M-element vector | M-by-C matrix

When the block receives a single audio channel, the audio data frame is an M-element vector from a
simulated hardware audio output. The Samples per frame parameter defines the number of
samples, M, of audio data. When the block receives multiple audio channels, the audio data frame is
an M-by-C matrix, where C is specified by the Number of channels parameter.
Dependencies

To enable this port, set the Output parameter to To output port.
Data Types: int8 | int16 | int32

Parameters
Output — Output type
To terminator (default) | To output port

Specify if the block acts as a terminator, similar to the Terminator block, or produces data to an
output port.

Number of channels — Number of data channels
2 (default) | positive integer

1 Blocks

1-104

Specify the number of audio channels, C, sent to the audio device. This number must match the
Number of channels parameter in the Audio Playback block.

Samples per frame — Size of data vector read from audio device
4410 (default) | positive scalar integer

Specify the number of samples per frame, M, of audio data.

Sample time — Sample time in seconds
-1 (default) | positive scalar

Enter the sample time to be used by the timer-driven task subsystem when you clear the Enable
event-based execution parameter.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

To automatically generate C code for your design, and execute on an SoC device, use the SoC
Builder tool. To generate and execute C code for your SoC models, Embedded Coder features are
required. For more information on generating code for SoC designs, see “Generate SoC Design”.

Embedded Coder does not generate code for this block. In the generated code, the advanced Linux
sound architecture (ALSA) driver framework performs audio output on the device. The related Audio
Playback block represents the ALSA driver. For more information on the ALSA driver framework, see
the Advanced Linux Sound Architecture website.

See Also
Audio Capture | Audio Capture Interface | Audio Playback

External Websites
Advanced Linux Sound Architecture

Introduced in R2021a

 Audio Playback Interface

1-105

https://en.wikipedia.org/wiki/Advanced_Linux_Sound_Architecture
https://en.wikipedia.org/wiki/Advanced_Linux_Sound_Architecture

Video Capture Interface
Simulate capture of images from video stream on hardware
Library: SoC Blockset / Peripherals

Description
The Video Capture Interface block simulates the behavior of a video input device. The block emits the
captured image in message for a connected Video Capture block that can be used in an algorithm.
The block can also emit an event that, when connected a Task Manager block, can trigger a task
containing the Video Capture block.

Ports
Input

data — Image data
3MN-length vector

Specify a 3MN-length vector as the unwrapped images matrices.

Dependencies

To enable this port, set the Input parameter to From input port.
Data Types: uint8

Output

event — Task event signal
scalar

This port sends a message at each new image event. This output connects to the input of the Task
Manager block to execute the associated event-driven task after receiving the new image.

Dependencies

To enable this port, select the Show event port parameter.
Data Types: rteEvent

msg — SoC message data
scalar

This port outputs data messages containing image data to a connected Video Capture block.
Data Types: SoCData

1 Blocks

1-106

Parameters
Input — Source of simulated video data
From dialog (default) | From input port | From timeseries object

Specify the source of the simulated image data.

Value — Image to be imported
uint8(floor(rand(1,3*160*120)*255)) (default) | 3MN-element vector

Specify the simulated image as a vector. The vector gets transformed into three M-by-N matrices
representing the color channels of the image source.

Object name — Timeseries object name
[] (default) | MATLAB workspace variable

Specify the video source as a timeseries object in the MATLAB workspace.

Sample time — Sample time in seconds
-1 (default) | positive scalar

Enter the sample time defining the rate at which to output the message containing video data.

Show event port — Option to enable task event ports
off (default) | on

Select this parameter to enable an event port that, when connected to the Task Manager block, can
execute event-driven tasks.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

To automatically generate C code for your design, and execute on an SoC device, use the SoC
Builder tool. To generate and execute C code for your SoC models, Embedded Coder features are
required. For more information on generating code for SoC designs, see “Generate SoC Design”.

Embedded Coder does not generate code for this block. In the generated code,the V4L2 driver
framework performs the video capture on the device. The related Video Capture block represents the
V4L2 driver. For more information on the V4L2 driver framework, see Video4Linux.

See Also
Video Capture | Video Display | Video Display Interface | Video Stream Connector | Video Stream
FIFO | Video Test Sink | Video Test Source

External Websites
Video4Linux

Introduced in R2021a

 Video Capture Interface

1-107

https://en.wikipedia.org/wiki/Video4Linux
https://en.wikipedia.org/wiki/Video4Linux

Video Display Interface
Simulate display of images to video screen on device
Library: SoC Blockset / Peripherals

Description
The Video Display Interface block simulates the behavior of a video output device. This block receives
image samples as messages from a connected Video Display block that simulates the video driver
code connected to your algorithm.

Ports
Input

msg — SoC message data
vector

This port receives the image data as a message from the msg port of a connected Video Display
block.
Data Types: SoCData

Output

data — Image data
3*height*width-element vector

The port outputs the unwrapped image matrix data as three heightwidth-element vectors where
height and width are the dimensions of the image matrix defined by the Image Size parameter. The
3 is the multiplier for the RGB channels.
Dependencies

To enable this port, set the Output parameter to To output port.
Data Types: uint8

Parameters
Output — Output type
To terminator (default) | To output port

Specify if the block acts as a terminator, similar to the Terminator block, or produces data to an
output port.

Image size — Image size
160x120 (default) | 320x240 | 640x480 | 800x600 | custom

1 Blocks

1-108

Specify the height and width dimensions of the image emitted as a vector by the data port of this
block. Specify custom to set custom image dimensions.

Image size ([width, height]) — Image size
[320, 240] (default) | two-element vector of positive integers

Specify custom height and width dimensions of the image matrix emitted by the data port of this
block.

Dependencies

To enable this parameter, set the Image size parameter to custom.

Pixel format — Format of the pixel data
RGB (default) | YCbCr 4:2:2

Specify the image data output encoding as RGB or YCbCr 4:2:2 triplets.

Dependencies

To enable this parameter, set the Image size parameter to custom.

Sample time — Sample time in seconds
-1 (default) | positive scalar

Enter the sample time defining the rate at which to receive the message containing video data.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

To automatically generate C code for your design, and execute on an SoC device, use the SoC
Builder tool. To generate and execute C code for your SoC models, Embedded Coder features are
required. For more information on generating code for SoC designs, see “Generate SoC Design”.

Embedded Coder does not generate code for this block. In the generated code,the V4L2 driver
framework performs the video display on the device. The related Video Display block represents the
V4L2 driver. For more information on the V4L2 driver framework, see Video4Linux.

See Also
Video Capture | Video Capture Interface | Video Display | Video Stream Connector | Video Stream
FIFO | Video Test Sink | Video Test Source

External Websites
Video4Linux

Introduced in R2021a

 Video Display Interface

1-109

https://en.wikipedia.org/wiki/Video4Linux
https://en.wikipedia.org/wiki/Video4Linux

Interprocess Data Channel
Model interprocessor data channel between two processors
Library: SoC Blockset / Processor Interconnect

Description
The Interprocess Data Channel block simulates the interprocessor data channel available in
multiprocessor or OS managed SoC hardware board families. The block provides a channel for
asynchronous data transfer between two processors. This diagram shows a generalized view of the
interprocessor data connection.

Ports
Input

datain — Input data message
scalar

This message port receives input data as a message from a connected Interprocess Data Write block.
For more information on messages, see “Messages”.
Data Types: SoCData

Output

dataout — Output data message
scalar

This message port sends output data as a message to a connected Interprocess Data Read block. For
more information on messages, see “Messages”.
Data Types: SoCData

1 Blocks

1-110

event — Task event signal
scalar

This port sends a task event signal that triggers the Task Manager block to execute the associated
event-driven task.

Dependencies

To enable this port, select the Show event port parameter.
Data Types: rteEvent

Parameters
Show event port — Option to enable task event ports
off (default) | on

Enable an event port that, when connected to the Task Manager block, can execute event-driven
tasks.

See Also
Interprocess Data Read | Interprocess Data Write

Topics
“Multiprocessor Execution”
“Interprocess Data Communication via Dedicated Hardware Peripheral”
“Interprocess Data Communication in Operating Systems”

Introduced in R2020b

 Interprocess Data Channel

1-111

Interprocess Data Read
Receive messages from another processor using interprocess communication channel
Library: SoC Blockset / Processor Interconnect

Description
The Interprocess Data Read block asynchronously receives messages from another processor in an
SoC using an interprocess data channel. The Interprocess Data Read block connects to an
Interprocess Data Channel block that similarly connects to an Interprocess Data Write block
contained in a separate processor reference model. In simulation, data from another processor is
asynchronously received and processed in the processor containing the Interprocess Data Read block
and associated asynchronous task. This diagram shows a generalized view of the interprocessor data
channel connection.

Ports
Input

msg — Data message from interprocess data channel
scalar

This message port receives data messages from the connected Interprocess Data Channel block. The
messages process when the Task Manager block triggers the task containing the this block. For more
information on messages, see “Messages”.

Dependencies
Data Types: SoCData

1 Blocks

1-112

Output

data — Data frame read from another processor
vector

This port emits a data frame read from another processor connected via the Interprocess Data
Channel block.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean

Parameters
Data type — Data type of interprocess data channel
double (default) | single | int8 | int16 | int32 | int64 | int64 | uint8 | uint16 | uint32 |
uint64 | uint64 | Boolean

Enter the data type used by the interprocess data channel.

Buffer size — Size of data vector read from interprocess data channel
1 (default) | positive integer

Enter the size of the data vector read from the interprocess data channel.

Number of buffers — Number of data buffers in interprocess data channel
4 (default) | positive integer

Enter the number of data buffers in the interprocess data channel.

Sample time — Sample time
-1 (default) | positive scalar

Enter the sample time of the block to apply to the timer-driven task subsystem.

See Also
IPC Channel | IPC Write

Topics
“Multiprocessor Execution”
“Interprocess Data Communication via Dedicated Hardware Peripheral”
“Interprocess Data Communication in Operating Systems”

Introduced in R2020b

 Interprocess Data Read

1-113

Interprocess Data Write
Send messages to another processor using interprocessor data write
Library: SoC Blockset / Processor Interconnect

Description
The Interprocess Data Write block asynchronously sends messages to another processor in an SoC
using an interprocess data channel. The Interprocess Data Write block connects to an Interprocess
Data Channel block that similarly connects to an Interprocess Data Read block contained in a
separate processor reference model. In simulation, data from the current processor is asynchronously
sent and processed in the processor containing the Interprocess Data Read block and associated
asynchronous task. This diagram shows a generalized view of the interprocess data channel.

Ports
Input

data — Data input
vector

This port receives a data vector to send to another processor over the interprocess data channel.
Data Types: single | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed point

Output

msg — Output data message
scalar

This message port sends the output data as a message to the connected Interprocess Data Channel
block. For more information on messages, see “Messages”.

1 Blocks

1-114

Data Types: SoCData

See Also
Interprocess Data Channel | Interprocess Data Read

Topics
“Multiprocessor Execution”
“Interprocess Data Communication via Dedicated Hardware Peripheral”
“Interprocess Data Communication in Operating Systems”

Introduced in R2020b

 Interprocess Data Write

1-115

ADC Read
Read ADC data values from ADC Interface block
Library: SoC Blockset / Processor I/O

Description
The ADC Read block converts the message received from the ADC Interface block to a signal that can
be used by an algorithm. The data type of the output signal is the same as the data type in the
contained data massage.

Ports
Input

msg — Data message from register
scalar

This message port receives ADC value messages from a connected ADC Interface block. The
messages process when the Task Manager block triggers a task containing the ADC Read block. For
more information on messages, see “Messages”.
Data Types: SoCData

Output

data — Output signal
scalar

This port emits a measurement from the ADC Interface block.
Data Types: double | single | int8 | int16 | int32 | uint8 | uint16 | uint32

Parameters
Data type — Data type of ADC measurements received
double (default) | single | uint8 | int8 | int16 | int32 | uint16 | uint32

Select the data type of the input data. Match this data type with data type of the ADC hardware.

Sample time — Sample time
-1 (default) | nonnegative scalar

Specify how often the scheduler runs this block. If this value is -1 (default), the scheduler assigns the
sample time for the block.

1 Blocks

1-116

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

When deployed to a supported hardware board, this generated code for this block reads the ADC
registers in the MCU for the specified ADC module. For more information on configuring the register
settings, see Peripheral Configuration.

Note Supported hardware boards include the TI Delfino F2837xD and TI Delfino F2837xD
LaunchPad from the SoC Blockset™ Support Package for Texas Instruments™ C2000™ Processors.

See Also
ADC Interface | PWM Interface | PWM Write

Topics
“Get Started with SoC Blocks on MCUs”
“Integrate MCU Scheduling and Peripherals in Motor Control Application”

External Websites
https://en.wikipedia.org/wiki/Analog-to-digital_converter

Introduced in R2020b

 ADC Read

1-117

https://en.wikipedia.org/wiki/Analog-to-digital_converter

PWM Write
Send pulse width modulation (PWM) signal configuration to PWM Interface block
Library: SoC Blockset / Processor I/O

Description
The PWM Write block sets the duty cycle for a PWM peripheral. In simulation, the block passes
through the duty cycle input to drive the PWM Interface block that simulates the PWM switching
signals produced by the hardware. When deployed to hardware, the PWM Write block writes to the
appropriate PWM drivers on the hardware.

Ports
Input

Compare — Comparator trigger value
positive scalar | N-length positive vector

Specify the comparator values that trigger the change in pulse-width modulation waveform. When a
N is 1, the comparator value defines the duty cycle of the PWM waveform. Using 2 comparators and
the settings provided in the PWM Interface block, more fine grained control of the output waveform
can be achieved.
Data Types: single | double

Period — Period of PWM waveform
positive scalar

Specify the total period of the PWM waveform.

Dependencies

This parameter is only available when the Show period as input parameter is enabled.
Data Types: single | double

Phase — Phase offset of the waveform
scalar from 0 to 1

Specify the phase of the PWM waveform relative period of waveform. The phase is represented as a
scalar between 0 and 1 equivalent to a range of 0 to 360 degrees.

Dependencies

This parameter is only available when the Show phase as input parameter is enabled.
Data Types: single | double

1 Blocks

1-118

Output

msg — PWM duty cycle values
scalar

This message port sends duty cycle values as messages to a connected PWM Interface block. For
more information on messages, see “Messages”.

Note This output is used only during simulation and is ignored in code generation and external mode
simulation.

Data Types: SoCData

Parameters
Show period as input — Show period input port
off (default) | on

Show a Period input port on the block. This port accepts a dynamic period value for the PWM
waveform, allowing the period of waveform to be modified during execution.

Show phase as input — Show phase input port
off (default) | on

Show a Phase input port on the block. This port accepts a dynamic phase value for the PWM
waveform, allowing the phase offset of the waveform to be modified during execution.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

When deployed to a supported hardware board, this generated code for this block writes to the PWM
registers in the MCU for the specified PWM module. For more information on configuring the register
settings, see Peripheral Configuration.

Note Supported hardware boards include the TI Delfino F2837xD and TI Delfino F2837xD
LaunchPad from the SoC Blockset Support Package for Texas Instruments C2000 Processors.

See Also
PWM Interface

Topics
“Get Started with SoC Blocks on MCUs”
“Integrate MCU Scheduling and Peripherals in Motor Control Application”

External Websites
https://en.wikipedia.org/wiki/Pulse-width_modulation

 PWM Write

1-119

https://en.wikipedia.org/wiki/Pulse-width_modulation

Introduced in R2020b

1 Blocks

1-120

Register Read
Read data from a register region on the specified IP core
Library: SoC Blockset / Processor I/O

Description
The Register Read block reads data from a register region on the specified IP core. In simulation, a
timer-driven or event-driven task subsystem contains the Register Read block. The data signals from
the Register Read block connect to the Register Channel block managing those registers and their
transactions.

When developing or analyzing the software side of an SoC application, the Register Read block can
be connected to an IO Data Source block. In this configuration, the IO Data Source block provides
either previously recorded or artificial data, enabling a more directed simulation of the software and
processor side of the application, without need to explicitly model the hardware and memory
interactions.

Ports
Input

msg — Data message from register
scalar

This message port receives data messages from a connected Register Channel or IO Data Source
block. The messages process when the Task Manager block triggers task containing the Register
Read block. For more information on messages, see “Messages”.
Data Types: SoCData

Output

data — Output signal
vector

This port emits the data vector read from the specified registers in the Register Channel starting at
Offset address from the base address of the IP core.
Data Types: single | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean

Parameters
Device name — Path and file name of IP core device
/dev/mwipcore (default) | character array

Enter the path and file name of the IP core device.

 Register Read

1-121

Offset address — Offset from the base address of the IP core to the register
hex2dec('0100') (default) | positive integer

Enter the offset from the base address of the IP core to the register. The block reads data from this
register. Use the hex2dec function when you specify the offset address using a hexadecimal number
expressed as a character vector. The offset address can be selected using the Memory Mapper tool.

Output data type — Data type used by IP core
uint32 (default) | single | int8 | uint8 | int16 | int32 | uint32 | boolean | fixed-point

Enter the data type used by the IP core.

Output vector size — Size of data vector from IP core
1 (default) | positive integer

Enter the size of the data vector read from the IP core device.

Sample time — Sample time
0.1 (default) | positive number

Enter the sample time in seconds. Either the connected Register Channel or IO Data Source blocks
get polled at this rate when this block is used in a timer-driven task.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

To automatically generate C code for your design, and execute on an SoC device, use the SoC
Builder tool. To generate and execute C code for your SoC models, Embedded Coder features are
required. For more information on generating code for SoC designs, see “Generate SoC Design”.

SoC Builder implements the Register Read block with FPGA and processor IPs that use the AXI4
interface protocol. The AXI4 interface protocol allows the processor algorithm to read vector data
from a contiguous group of registers on the FPGA. Use this block for simple, low-throughput memory-
mapped communication, such as reading from control and status registers. This diagram shows a
generalized representation of the generated code implementation.

1 Blocks

1-122

See Also
Register Channel

Introduced in R2019a

 Register Read

1-123

Register Write
Write data to a register region on the specified IP core
Library: SoC Blockset / Processor I/O

Description
The Register Write block writes data from your processor algorithm to a register region on the
specified IP core. In simulation, a timer-driven or event-driven task subsystem contains the Register
Write block. The data signals from the Register Write block connect to the Register Channel block
managing those registers and their transactions.

When developing or analyzing the software side of an SoC application, the Register Write block can
be connected to an IO Data Sink block. In this configuration, the IO Data Sink block provides either
previously recorded or artificial data, enabling a more directed simulation of the software and
processor side of the application, without need to explicitly model the hardware and memory
interactions.

Ports
Input

data — Data input
vector

This port receives the data vector to write to the registers on the IP core starting at Offset address
from the base address of the IP core.
Data Types: single | int8 | int16 | int32 | uint8 | uint16 | uint32 | Boolean | fixed point

Output

msg — Output register data message
scalar

This message port sends the output register data, as a message, to the connected Register Channel
or IO Data Sink block. For more information on messages, see “Messages”.
Data Types: SoCData

Parameters
Output sink — Direct output to port or base workspace
To output port (default) | Base workspace | IP core register

Select To output port to write data to the output port, msg. Select Base workspace to write data
to a variable in the base workspace. When writing to the base workspace, the block updates the value

1 Blocks

1-124

of a Simulink.Parameter object with name set by Simulink.Parameter object name
parameter in the base workspace. Select IP core register to write to an IP Core Register Read
block with the same Register name parameter.

Note Placing the Register Write block inside a Initialize Function block subsystem, writes to a
Simulink.Parameter object at the start of simulation. A register, represented as a Constant block,
in an FPGA reference model can be initialized at the start of simulation with the value of the
Simulink.Parameter object. This method of writing to FPGA registers requires a constant value
throughout the simulation but can reduce the simulation time required by your SoC model.

Simulink.Parameter object name — Name of Simulink.Parameter object
A (default) | character vector

Name of Simulink.Parameter object to be created in the Base workspace.
Example: A
Dependencies

To enable this parameter, set Output sink to Base workspace.

Register name — Name of a register in IP Core
RegA (default) | character vector

Name of register defined in an IP Core Register Read block located in the FPGA reference model.
Example: RegA
Dependencies

To enable this parameter, set Output sink to IP core register.

Device name — Path and file name of IP core device
/dev/mwipcore (default) | character array

Enter the path and file name of the IP core device.

Offset address — Offset from the base address of the IP core to the register
hex2dec('0100') (default) | positive integer

Enter the offset from the base address of the IP core to the register. The block writes data to this
register. Use the hex2dec function when you specify the offset address using a hexadecimal number
expressed as a character vector. The offset address can be selected using the Memory Mapper tool.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

To automatically generate C code for your design, and execute on an SoC device, use the SoC
Builder tool. To generate and execute C code for your SoC models, Embedded Coder features are
required. For more information on generating code for SoC designs, see “Generate SoC Design”.

SoC Builder implements the Register Write block with FPGA and processor IPs that use the AXI4
interface protocol. The AXI4 interface protocol allows the processor to write vector data from the

 Register Write

1-125

processor to a contiguous group of registers on the FPGA. Use this block for simple, low-throughput
memory-mapped communication, such as writing to control and status registers. This diagram shows
a generalized representation of the generated code implementation.

See Also
Register Channel | Register Read

Introduced in R2019a

1 Blocks

1-126

Stream Read
Stream data from shared memory to processor algorithms
Library: SoC Blockset / Processor I/O

Description
The Stream Read block streams data from shared memory in the memory channel to your processor
algorithm. In simulation, a timer-driven or event-driven task subsystem contains the Stream Read
block. The data signals from the Memory Channel block connect to the Stream Read block. Following
a write to the shared memory, the Memory Channel notifies the Task Manager block of the write
event. The Task Manager block then triggers the event-driven subsystem containing the Stream Read
block and associated algorithm.

When developing or analyzing the software side of an SoC application, the Stream Read block can be
connected to an IO Data Source block. In this configuration, the IO Data Source block provides either
previously recorded or artificial data, enabling a more directed simulation of the software and
processor side of the application, without need to explicitly model the hardware and memory
interactions.

Ports
Output

data — Data frame from shared memory
vector

This port emits a data frame read from shared a region of shared memory defined in the Memory
Channel block.
Data Types: uint16 | uint32 | uint64 | fixdt(0,128,0)

valid — Valid frame data
scalar

A flag indicating a valid data frame read from the memory channel.
Data Types: Boolean

done — Notification message of completed read
scalar

This message port sends notification, as a message, to the connected Memory Channel or IO Data
Source block that the read completed. For more information on messages, see “Messages”.
Data Types: Boolean

 Stream Read

1-127

Input

msg — Data message from memory
scalar

This message port receives data messages from the connected Memory Channel or IO Data Source
block. The messages process when the Task Manager block triggers the task containing the Stream
Read block. For more information on messages, see “Messages”.
Data Types: SoCData

Parameters
Main

Device name — Name of IP core device
ip:s2mm0 (default) | colon-separated list of IP core name and channel

Enter the name and channel of the IP core on the FPGA as a colon separated list.

Output data type — Data type of IP core
uint32 (default) | uint16 | uint64 | fixdt(0,128,0)

Enter the data type used by the memory channel.

Samples per frame — Size of data vector read from IP core
1024 (default) | positive scalar integer

Enter the size of the data vector read from the memory channel.

Number of buffers — Number of data buffers
16 (default) | positive integer

Enter the number of data frame buffers in physical memory. This number should match the Number
of buffers parameter in the Memory Channel block or IO Data Source block.

Enable event-based execution — Enable event-driven task execution
on (default) | off

To use this block in event-driven task subsystems, select this parameter. To use this block in timer-
driven task subsystems, clear this parameter.

When Enable event-based execution is selected, this block reads from the Memory Channel each
time a a full buffer is available in the shared memory region. When Enable event-based execution
is cleared, the block reads the data in the shared memory region at each sample time.

Sample time — Sample time in seconds
-1 (default) | positive scalar

Enter the sample time used by the timer-driven task subsystem when the Enable event-based
execution is cleared.

1 Blocks

1-128

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

To automatically generate C code for your design, and execute on an SoC device, use the SoC
Builder tool. To generate and execute C code for your SoC models, Embedded Coder features are
required. For more information on generating code for SoC designs, see “Generate SoC Design”.

The SoC Builder tool implements the Stream Read, Stream Write, Memory Channel, and Task
Manager blocks with FPGA and processor IPs that use the AXI4-stream communication protocol. The
AXI4-stream protocol uses a direct memory access (DMA) to read a data vector to a shared region on
the external memory. This protocol enables high-speed streaming of data between the FPGA and the
embedded processor through external memory. This diagram shows a generalized representation of
the generated code implementation.

See Also
Memory Channel | Stream Write | Task Manager

Topics
“Event-Driven Tasks”

Introduced in R2019a

 Stream Read

1-129

Stream Write
Stream data from processor algorithms to shared memory
Library: SoC Blockset / Processor I/O

Description
The Stream Write block streams data from your processor algorithm to shared memory in the
Memory Channel block. The Stream Write block has an internal counter that keeps track of the
number of empty buffers in the shared memory. After a successful read from memory, the memory
sends a done signal to the Stream Write block. Then, the block increments the counter, asserting that
a buffer is available in the memory. A write transaction is successful if at least one buffer is available
for writing. The Stream Write block sends a status of True back to the software. You can use this
status signal to perform actions such as counting dropped frames or issuing rewrite requests.

In simulation, a timer-driven or event-driven task subsystem contains the Stream Write block. The
data signals from the software algorithm connect to the Stream Write block. The write transaction is
issued as a message to the Memory channel block. After a read operation from shared memory, the
Memory Channel block notifies the Stream Write block of the read event via the done signal.

Ports
Input

data — Data frame from software algorithm
vector

This port receives a data frame from the software algorithm. The block then streams the data as a
message to a region of shared memory defined in the Memory Channel block.
Data Types: uint16 | uint32 | uint64 | fixdt(0,128,0)

done — Notification of available buffer in memory
scalar

This message port receives a notification from the connected Memory Channel or IO Data Sink block.
The notification indicates that a read transaction completed and that a buffer in memory is available
for writing.
Data Types: Boolean

Output

msg — Data message to memory
scalar

1 Blocks

1-130

When buffer space is available in the memory, this message port emits data messages to the
connected Memory Channel or IO Data Sink block. For more information on messages, see
“Messages”.
Data Types: SoCData

status — Status of completed write transaction
scalar

This port sends a true status(1) to the processor after a write transaction to memory occurred. Use
this status to count dropped frames.
Data Types: Boolean

Parameters
Device name — Name of IP core device
ip:MM2S (default) | colon-separated list of IP core name and channel

The device name parameter is generated by the SoC Builder tool. Enter the name and channel of the
IP core on the FPGA as a colon-separated list.

Number of buffers — Number of data buffers
3 (default) | positive integer

Enter the number of data frame buffers in the physical memory. This number must match the
Number of buffers parameter in the Memory Channel or IO Data Sink block.

Enable event-based execution — Option to enable event-driven task execution
on (default) | off

• Select this parameter to use this block in event-driven task subsystems. In this case, the block
writes to the Memory Channel block each time an empty buffer is available in the shared memory
region.

• Clear this parameter to use this block in timer-driven task subsystems. In this case, the block
writes the data in the shared memory region at each sample time.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

To automatically generate C code for your design, and execute on an SoC device, use the SoC
Builder tool. To generate and execute C code for your SoC models, Embedded Coder features are
required. For more information on generating code for SoC designs, see “Generate SoC Design”.

The SoC Builder tool implements the Stream Write, Stream Read, Memory Channel, and Task
Manager blocks with FPGA and processor IPs that use the AXI4-stream communication protocol. The
AXI4-stream protocol uses a direct memory access (DMA) to read a data vector to a shared region on
the external memory. This protocol enables high-speed streaming of data between the FPGA and the
embedded processor through external memory.

 Stream Write

1-131

See Also
Blocks
Memory Channel | Stream Read | Task Manager

Topics
“Event-Driven Tasks”

Introduced in R2020b

1 Blocks

1-132

TCP Read
Receive TCP/IP packets from remote host over TCP/IP network
Library: SoC Blockset / Processor I/O

Description
The TCP Read block receives a stream of TCP/IP packets from a remote host over a TCP/IP
(Transmission Control Protocol/Internet Protocol) network.

Ports
Input

msg — Stream of TCP/IP packets received from the remote host
scalar

This message port receives TCP/IP packets, as messages, from a connected IO Data Source block.
The messages process when the Task Manager block triggers task containing the TCP Read block.
For more information on messages, see “Messages”.

Note This input is used only during simulation. and does nothing in code generation and external
mode simulation.

Data Types: SoCData

Output

data — TCP/IP packet received from remote host
numeric vector

Output TCP/IP packets received from remote host, returned as a numeric vector. The size and data
type of this output is same as the size and data type of the input message.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

length — Length of output TCP/IP packet
nonnegative scalar

Length of output TCP/IP packets returned on the output data port.
Data Types: uint32

 TCP Read

1-133

Parameters
Network role — Set block as client or server
Client (default) | Server

To configure this block as a TCP/IP client or server, set this parameter to Client or Server,
respectively.

When you set this parameter to Client, you must provide the remote IP address and remote IP port
number of the TCP/IP server from which you want to receive TCP/IP packets. Specify this information
by using the Remote address and Remote port parameters.

When you set this parameter to Server, you must provide the local IP port number, which acts as the
listening port of the TCP/IP server running in the hardware. Specify this information using the Local
port parameter. When you set this parameter to Server, you can only connect to one client at a time.

Remote address — IP address of remote server from which TCP/IP packets are received
127.0.0.1 (default) | dotted-quad expression

Specify the IP address of remote server from which you want to receive TCP/IP packets.

Dependencies

To enable this parameter, set the Network role parameter to Client.

Remote port — IP port on remote server from which TCP/IP packets are received
25000 (default) | integer from 1 to 65535

Specify the port number of the remote server from which you want to receive TCP/IP packets.

Dependencies

To enable this parameter, set the Network role parameter to Client.

Local port — IP port of host on which data is received
-1 (default) | integer from 1 to 65,535

Specify the port number of the application on which you want to receive the TCP/IP packets when the
Network role is set to Client. The default value -1 assigns any random available port as local port
when you set the Network role parameter to Client.

This local port acts as the listening port on the TCP/IP server when the Network role is set to
Server. Specify a value from 1 to 65535 when you set Network role parameter to Server. Specify
this local port number as the remote port number in the sending host from which you want to receive
TCP/IP packets.

Data type — Data type of TCP/IP packets received
uint8 (default) | single | double | int8 | int16 | int32 | uint16 | uint32

Select the data type of the input data. Match this data type with data type of TCP/IP packets sent
from the remote host.

Maximum data length (elements) — Maximum length of output TCP/IP packet
1 (default) | positive scalar

1 Blocks

1-134

Specify the maximum number of data elements that the output data port can produce at every time
step.

Enable event-based execution — Enable event-based task execution
off (default) | on

To generate event-driven code, select this parameter. To generate timer-driven code, clear this
parameter.

When Enable event-based execution is selected, the block reads TCP/IP packets from the socket
buffer whenever any TCP/IP packet is received in the socket buffer irrespective of the sample time.
When Enable event-based execution is cleared, the block reads available TCP/IP packets from the
socket buffer at each sample time. To set the size of the TCP/IP packet that the block can read from
the socket buffer, specify the size in the Receive buffer size parameter.

Sample time — Sample time
-1 (default) | nonnegative scalar

Specify how often the scheduler runs this block. If this value is -1 (default), the scheduler assigns the
sample time for the block.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

To automatically generate C code for your design, and execute on an SoC device, use the SoC
Builder tool. To generate and execute C code for your SoC models, Embedded Coder features are
required. For more information on generating code for SoC designs, see “Generate SoC Design”.

Embedded Coder generates event-driven or timer-driven code for this block based on the Enable
event-based execution parameter selection. This diagram shows a generalized representation of the
generated code implementation.

 TCP Read

1-135

Note Timing measurements from generated code might vary within the execution of a task instance
compared to the timing of tasks in simulation. You can configure your model to use data caching in
task signals to reach improved agreement between the simulation and generated code. For more
information, see Value and Caching of Task Subsystem Signals.

See Also
IO Data Source | TCP Write | Task Manager

Introduced in R2019a

1 Blocks

1-136

TCP Write
Send TCP/IP packets to remote host over TCP/IP network
Library: SoC Blockset / Processor I/O

Description
The TCP Write block sends TCP/IP packets to a remote host over a TCP/IP (Transmission Control
Protocol/Internet Protocol) network.

Ports
Input

data — Input data
numeric vector

Input data, specified as a numeric vector. The block sends this data over a TCP/IP network to the
remote host.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output

msg — Stream of TCP/IP packets sent to the remote host
scalar

This message port sends TCP/IP packets, as messages, to a connected IO Data Sink block. For more
information on messages, see “Messages”.

Note This output is used only during simulation. and does nothing in code generation and external
mode simulation.

Data Types: SoCData

Parameters
Network role — Set the block as server or client
Client (default) | Server

To configure this block as a TCP/IP client or server, set this parameter to Client or Server,
respectively.

When you set this parameter to Client, you must provide the remote IP address and remote IP port
number of the TCP/IP server to which you want to send TCP/IP packets. Specify this information by
using the Remote address and Remote port parameters.

 TCP Write

1-137

When you set this parameter to Server, you must provide the local IP port number, which acts as the
listening port of the TCP/IP server running in the hardware. Specify this information using the Local
port parameter.

Remote address — IP address of remote server to which TCP/IP packets are sent
127.0.0.1 (default) | dotted-quad expression

Specify the IP address of the remote server to which you want to send TCP/IP packets.

Dependencies

To enable this parameter, set the Network role parameter to Client.

Remote port — IP port of remote server to which TCP/IP packets are sent
25000 (default) | integer from 1 to 65,535

Specify the port number of the remote server to which you want to send TCP/IP packets.

Dependencies

To enable this parameter, set the Network role parameter to Client.

Local port — IP port on sending host from which TCP/IP packets are sent
-1 (default) | integer from 1 to 65535

When the Network role parameter is set to Client, specify the IP port number of the application
from which you want to send TCP/IP packets. The default value -1, sets this IP port number to a
random available port number and uses that port to send the packets.

When the Network role parameter is set to Server, this local port acts as the listing port of the
TCP/IP server running in the hardware. In this case, specify a value from 1 to 65,535 for this
parameter.

Byte order — Byte order
LittleEndian (default) | BigEndian

Byte order of the TCP/IP packets, specified as one of these values:

• LittleEndian — Sets the byte order of TCP/IP packets to little endian.
• BigEndian — Sets the byte order of TCP/IP packets to big endian.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

To automatically generate C code for your design, and execute on an SoC device, use the SoC
Builder tool. To generate and execute C code for your SoC models, Embedded Coder features are
required. For more information on generating code for SoC designs, see “Generate SoC Design”.

Embedded Coder generates event driven code for this block. This diagram shows a generalized
representation of the generated code implementation.

1 Blocks

1-138

Note Timing measurements from generated code might vary within the execution of a task instance
compared to the timing of tasks in simulation. You can configure your model to use data caching in
task signals to reach improved agreement between the simulation and generated code. For more
information, see Value and Caching of Task Subsystem Signals.

See Also
IO Data Sink | TCP Read | Task Manager

Introduced in R2019a

 TCP Write

1-139

UDP Read
Receive UDP packets from remote host
Library: SoC Blockset / Processor I/O

SoC Blockset / Host I/O

Description
The UDP Read block receives UDP (User Datagram Protocol) packets from a remote host on the
application on target. The remote host is the computer or hardware from which you want to receive
UDP packets. The block reads UDP packets from UDP socket buffer and returns the UDP packets as a
one-dimensional array.

Ports
Input

msg — UDP packet
numeric vector

This message port receives UDP packets, as messages, from a connected IO Data Source block. The
messages process when the Task Manager block triggers task containing the UDP Read block. For
more information on messages, see “Messages”.

Note This input is used only during simulation. and does nothing in code generation and external
mode simulation.

Data Types: SoCData

Output

data — Output UDP packet
numeric vector

Output UDP packet, received from a remote host, returned as a numeric vector.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

length — Length of received UDP packet
nonnegative scalar

Length of output UDP packet returned on the output data port.
Data Types: uint32

1 Blocks

1-140

Parameters
Local port — IP port number of local host
25000 (default) | integer from 1 to 65,535

Specify the port number of the application on target in which you want to receive data. Match the
local IP port number with the remote IP port number of the remote host.

Data type — Data type of received data
uint8 (default) | single | double | int8 | int16 | int32 | uint16 | uint32

Select the type of data the block receives from the sending host. Match the data type with data type
of input data.

Maximum data length (elements) — Maximum length of output UDP packet
1 (default) | positive integer

Specify the maximum number of data elements that the output data port can produce at every time
step.

Receive buffer size (bytes) — Number of data bytes in received data
65535 (default) | integer from 1 to 65,535

Specify the maximum number of data bytes that the block can receive at each time step.

Enable event-based execution — Enable or disable event-based task execution
off (default) | on

To generate event-driven code, select this parameter. To generate timer-driven code, clear this
parameter.

When Enable event-based execution is selected, the block reads data from the socket buffer
whenever any UDP data is received in the socket buffer irrespective of the sample time. When
Enable event-based execution is cleared, the block reads available UDP data from the socket
buffer at each sample time. To set the size of the data that the block can read from the socket buffer,
specify the size in the Receive buffer size parameter.

Sample time — Sample time
-1 (default) | nonnegative scalar

Specify how often the scheduler runs this block. If this value is -1 (default), the scheduler assigns the
sample time for the block.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

To automatically generate C code for your design, and execute on an SoC device, use the SoC
Builder tool. To generate and execute C code for your SoC models, Embedded Coder features are
required. For more information on generating code for SoC designs, see “Generate SoC Design”.

 UDP Read

1-141

Embedded Coder generates event-driven or timer-driven code for this block, based on the Enable
event-based execution parameter selection. This diagram shows a generalized representation of the
generated code implementation.

Note Timing measurements from generated code might vary within the execution of a task instance
compared to the timing of tasks in simulation. You can configure your model to use data caching in
task signals to reach improved agreement between the simulation and generated code. For more
information, see Value and Caching of Task Subsystem Signals.

See Also
IO Data Source | Task Manager | UDP Write

Introduced in R2019a

1 Blocks

1-142

UDP Write
Send UDP packets to remote host
Library: SoC Blockset / Processor I/O

SoC Blockset / Host I/O

Description
The UDP Write block sends UDP (User Datagram Protocol) packets from the application on target to
a remote host. The remote host is the computer or hardware to which you want to send UDP packets.

Ports
Input

data — Input signal
numeric vector

Input data, specified as a numeric vector. The block sends this data as UDP packet to the remote host.
To set the byte order in which you want to send this UDP data, set the Byte order parameter. The
block converts this input data to the specified byte order type.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Output

msg — UDP packet sent to remote host
numeric vector

This message port sends UDP packets, as messages, to a connected IO Data Sink block. For more
information on messages, see “Messages”.

Note This output is used only during simulation. and does nothing in code generation and external
mode simulation.

Data Types: SoCData

Parameters
Remote IP address (255.255.255.255 for broadcast) — IP address of remote host to
which data is sent
127.0.0.1 (default) | dotted-quad expression

Specify the remote IP address of the host to which you want to send UDP packets.

 UDP Write

1-143

Remote port — IP port of remote host to which data is sent
25000 (default) | integer from 1 to 65,535

Specify the port number of the host to which you want to send UDP packets.

Local port — IP port number of application on target from which data is sent
-1 (default) | integer from 1 to 65,535

Specify the port number of the application on the target from which you want to send the UDP
packets. The default value -1, sets the local port number to a random available port number and uses
that port to send the UDP packets.

Byte order — Byte order
LittleEndian (default) | BigEndian

Byte order of the UDP packets, specified as one of these values:

• LittleEndian — Sets the byte order of UDP packets to little endian.
• BigEndian — Sets the byte order of UDP packets to big endian.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

To automatically generate C code for your design, and execute on an SoC device, use the SoC
Builder tool. To generate and execute C code for your SoC models, Embedded Coder features are
required. For more information on generating code for SoC designs, see “Generate SoC Design”.

Embedded Coder generates event-driven code for this block. This diagram shows a generalized
representation of the generated code implementation.

1 Blocks

1-144

Note Timing measurements from generated code might vary within the execution of a task instance
compared to the timing of tasks in simulation. You can configure your model to use data caching in
task signals to reach improved agreement between the simulation and generated code. For more
information, see Value and Caching of Task Subsystem Signals.

See Also
IO Data Sink | Task Manager | UDP Read

Introduced in R2019a

 UDP Write

1-145

Audio Capture
Capture audio samples from an input audio device and send to an algorithm
Library: SoC Blockset / Peripherals

Description
The Audio Capture block simulates behavior of the driver code that captures samples of an audio
stream on an hardware board. The input of this block must be connected to an Audio Capture
Interface block that simulates the physical audio device on a hardware board. Place this block inside
a task and connect to an algorithm to process a frame of audio samples each time the task executes.
For more information on tasks, see “Timer-Driven Task” and “Event-Driven Tasks”.

Ports
Input

msg — Data message from audio capture interface
scalar

This message port receives data messages from a connected Audio Capture Interface block. The
messages process when the Task Manager block triggers the task containing the Audio Capture
block. For more information on messages, see “Messages”.
Data Types: SoCData

Output

data — Data frame from captured audio
M-element vector | M-by-C matrix

When block receives a single audio channel, data is an M-element audio data frame received from a
simulated hardware audio source. The Samples per frame parameter defines the number of
samples, M, of audio data. When the block receives multiple audio channels, the audio data is an M-
by-C matrix, where C is specified by the Number of channels parameter.
Data Types: int8 | int16 | int32

Parameters
Data type — Data type of audio device
int16 (default) | int8 | int32

Specify the data type for the audio capture device.

Number of channels — Number of data channels
2 (default) | positive integer

1 Blocks

1-146

Specify the number of audio channels, C, received from the audio device. This number should match
the Number of channels parameter in the Audio Capture Interface block.

Samples per frame — Size of data vector read from audio device
4410 (default) | positive scalar integer

Specify the number samples per frame, M, of audio data received.

Sample time — Sample time in seconds
-1 (default) | positive scalar

If used in a timer-driven task, enter the sample time of the task defined in the Task Manager block. If
used in the event-driven task, enter -1.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

To automatically generate C code for your design, and execute on an SoC device, use the SoC
Builder tool. To generate and execute C code for your SoC models, Embedded Coder features are
required. For more information on generating code for SoC designs, see “Generate SoC Design”.

When deployed to a supported hardware board, this block uses the advanced Linux sound
architecture (ALSA) driver framework to capture audio from an audio input device. To specify the
audio input device, use the Peripheral Configuration tool. Similarly, to specify the event that triggers
the task, use the Task Mapping tool. For more information on the ALSA driver framework, see the
Advanced Linux Sound Architecture website.

See Also
Peripheral Configuration | Task Mapping | Audio Capture Interface | Audio Playback | Audio Playback
Interface

External Websites
Advanced Linux Sound Architecture

Introduced in R2021a

 Audio Capture

1-147

https://en.wikipedia.org/wiki/Advanced_Linux_Sound_Architecture
https://en.wikipedia.org/wiki/Advanced_Linux_Sound_Architecture

Audio Playback
Playback audio samples from an algorithm to an output audio device
Library: SoC Blockset / Peripherals

Description
The Audio Playback block simulates behavior of the driver code that plays audio to an audio output,
such as a speaker, on a hardware board. The output of this block must be connected to an Audio
Playback Interface block that simulates a physical audio device on the hardware board. Place this
block inside a task and connect to an algorithm to output a frame of audio samples each time the task
executes. For more information on tasks, see “Timer-Driven Task” and “Event-Driven Tasks”.

Ports
Input

data — Audio data frame
M-element vector | M-by-C matrix

Audio data frame to be sent to an audio playback device, specified as an M-element for single channel
audio or as an M-by-C matrix for multi-channel audio. C is specified by the Number of channels
parameter.
Data Types: int8 | int16 | int32

Output

msg — Data message from audio capture interface
scalar

This port outputs data messages containing audio data to a connected Audio Playback Interface
block. For more information on messages, see “Messages”.
Data Types: SoCData

Parameters
Number of channels — Number of channels
2 (default) | positive scalar

Specify the number of audio channels, C, in each audio data sample.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

1 Blocks

1-148

To automatically generate C code for your design, and execute on an SoC device, use the SoC
Builder tool. To generate and execute C code for your SoC models, Embedded Coder features are
required. For more information on generating code for SoC designs, see “Generate SoC Design”.

When deployed to a supported hardware board, this block uses the advanced Linux sound
architecture (ALSA) driver framework to send audio to an audio output device. To specify the audio
output device, use the Peripheral Configuration tool. Similarly, to specify the event that triggers the
task, use the Task Mapping tool. For more information on the ALSA driver framework, see the
Advanced Linux Sound Architecture website.

See Also
Peripheral Configuration | Task Mapping | Audio Capture | Audio Capture Interface | Audio Playback
Interface

External Websites
Advanced Linux Sound Architecture

Introduced in R2021a

 Audio Playback

1-149

https://en.wikipedia.org/wiki/Advanced_Linux_Sound_Architecture
https://en.wikipedia.org/wiki/Advanced_Linux_Sound_Architecture

Video Capture
Capture video from input video device and send to algorithm
Library: SoC Blockset / Peripherals

Description
The Video Capture block simulates behavior of the driver code that captures images from a video
device, such as a camera, on your hardware board. The input of this block must be connected to an
Video Capture Interface block that simulates a physical video source device on the hardware board.
Place this block inside a task and connect it to an algorithm to process an image each time the task
executes. For more information on tasks, see “Timer-Driven Task” and “Event-Driven Tasks”.

Ports
Input

msg — Data message from video capture interface
scalar

This message port receives data messages from a connected Video Capture Interface block. The
messages process when the Task Manager block triggers task containing the Video Capture block.
For more information on messages, see “Messages”.
Data Types: SoCData

Output

Color — Color component of image
height-by-width matrix

This port outputs a height-by-width matrix for that Color component, where the dimensions are the
size of the image. The Image size parameter specifies the height and width dimensions.

Dependencies

The Pixel format parameter sets the color component format as either RGB or YCbCr 4:2:2.
Data Types: uint8

Parameters
Image size — Image size
160x120 (default) | 320x240 | 640x480 | 800x600 | custom

Specify the height and width dimensions of the image matrix emitted by the color channel ports of
this block. Specify custom to set custom image dimensions.

1 Blocks

1-150

Image size ([width, height]) — Image size
[320, 240] (default) | 2-element vector of positive integers

Specify custom height-by-width dimensions of the image matrix emitted by the color channel ports.

Dependencies

To enable this parameter, set the Image size parameter to custom.

Pixel format — Format of the pixel data
RGB (default) | YCbCr 4:2:2

Specify the image data encoding as RGB or YCbCr 4:2:2 triplets.

Sample time — Sample time in seconds
-1 (default) | positive scalar

If used in a timer-driven task, enter the sample time of the task defined in the Task Manager block. If
used in the event-driven task, enter -1.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

To automatically generate C code for your design, and execute on an SoC device, use the SoC
Builder tool. To generate and execute C code for your SoC models, Embedded Coder features are
required. For more information on generating code for SoC designs, see “Generate SoC Design”.

When deployed to a supported hardware board, this block uses the V4L2 driver framework to capture
images from video capture devices, such as a camera. To specify the video capture device, use the
Peripheral Configuration tool. Similarly, to specify the event that triggers the task, use the Task
Mapping tool. For more information on the V4L2 driver framework, see Video4Linux.

See Also
Peripheral Configuration | Task Mapping | Video Capture Interface | Video Display | Video Display
Interface | Video Stream Connector | Video Stream FIFO | Video Test Sink | Video Test Source

External Websites
Video4Linux

Introduced in R2021a

 Video Capture

1-151

https://en.wikipedia.org/wiki/Video4Linux
https://en.wikipedia.org/wiki/Video4Linux

Video Display
Display image samples from an algorithm to an output video device
Library: SoC Blockset / Peripherals

Description
The Video Display block simulates behavior of the driver code that displays images to a video output,
such as an LCD screen, on a hardware board. The output of this block must be connected to a Video
Display Interface block that simulates a physical display screen on the hardware board. Place this
block inside a task and connect to an algorithm to output a image each time the task executes. For
more information on tasks, see “Timer-Driven Task” and “Event-Driven Tasks”.

Ports
Input

Color — Color component of image
height-by-width size matrix

Specify a height-by-width matrix, where the dimensions are the size of the image.

Dependencies

Use the Pixel format parameter to specify the color component format as either RGB or YCbCr
4:2:2.
Data Types: uint8

Output

msg — Data message to the video display interface
scalar

This port outputs data messages containing image data to a connected Video Display Interface block.
For more information on messages, see “Messages”.
Data Types: SoCData

Parameters
Pixel format — Format of pixel data
RGB (default) | YCbCr 4:2:2

Specify the input image data encoding as RGB or YCbCr 4:2:2 triplets.

1 Blocks

1-152

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

To automatically generate C code for your design, and execute on an SoC device, use the SoC
Builder tool. To generate and execute C code for your SoC models, Embedded Coder features are
required. For more information on generating code for SoC designs, see “Generate SoC Design”.

When deployed to a supported embedded Linux device, this block uses the V4L2 driver framework to
display images to attached video display. To specify the video output to access on the embedded
device, use the Peripheral Configuration tool. Similarly, to specify the event that triggers the task, use
the Task Mapping tool . For more information on the V4L2 driver framework, see Video4Linux.

See Also
Peripheral Configuration | Task Mapping | Video Capture | Video Capture Interface | Video Display
Interface | Video Stream Connector | Video Stream FIFO | Video Test Sink | Video Test Source

External Websites
Video4Linux

Introduced in R2021a

 Video Display

1-153

https://en.wikipedia.org/wiki/Video4Linux
https://en.wikipedia.org/wiki/Video4Linux

Task Manager
Create and manage task executions in Simulink model
Library: SoC Blockset / Processor Task Execution

Description
The Task Manager block simulates the execution of software tasks as they would be expected to
behave on an SoC processor. With the Task Manager, you can add and remove tasks from your model
that can either be timer-driven or event-driven. Tasks can be represented in a model as rates, for
timer-driven tasks, or function-call subsystems, for event-driven tasks, contained inside a single
Model block. The Task Manager executes individual tasks based on their parameters, such as period,
duration, trigger, priority, or processor core, and the combination of that task with the state of other
tasks and their priorities in the running model.

Note The Task Manager block cannot be used in a referenced model. For more information on
referenced models, see Model block.

The Task Manager block provides three methods to specify the duration of a task in simulation:

• A probability model of task duration defined in the block mask.
• From a data file recording of either a previous task simulation or from a task on an SoC device.
• Input ports on the block, which you can connect to more dynamic models of task duration.

Limitations
• A model containing a Task Manager blocks does not support simulation stepping. For more

information on simulation stepping, see “Simulation Stepper”.

Ports
Output

Task1 — Function-call from Task1
scalar

A function-call signal that can trigger timer-driven and event-driven tasks, represented as rate or
function-call subsystems in the processor Model block, respectively.

For a rate port from a timer-driven subsystem, to show on the Model block, set the Block
Parameters > Main > Schedule rates and select ports. For a function-call port from an event-
driven subsystem contained in a Function-Call Subsystem block to show on the Model block, include
an Inport in the processor Model block connected to the function-call trigger port of the subsystem.
In the Inport, check Block Parameters > Signal Attributes > Output function call.

1 Blocks

1-154

Note The Task1 port must be connected to either a function-call port or scheduled rate signal port
on a Model block.

Dependencies

To create or remove a control signal port for a task, add or remove the task from the Task Manager
block by clicking the Add or Delete buttons in the block dialog mask.

Input

Task1Event — Message event notification
scalar

A message port that triggers the associated event-driven task. The Task1Event port receives the
message from either a Memory Channel block or IO Data Source block. For more information on
messages, see “Messages”.

Dependencies

To show a Task1Event port, then Task1 must have Type set to Event-driven.
Data Types: rteEvent

Task1Dur — Task duration
positive scalar

A positive value signal that specifies the execution duration of a task at the present time. For more
information on specifying task duration, see “Task Duration”.

Dependencies

To enable this port, set the Specify task duration via parameter to Input port.
Data Types: single | double | int8 | int16 | int32 | uint8 | uint16 | uint32

Parameters
Enable task simulation — Enable simulation of task duration
on (default) | off

Enable or disable the simulation of task duration. If you clear this parameter, tasks simulate using a
function-call generator inheriting their period from the fundamental sample time of the model for
event-driven tasks or from the dialog for timer-driven tasks.

List of tasks — List of tasks
Task1 (default)

List of the tasks generated by the Task Manager block. Each task has a set of parameters listed in the
Main and Simulation tabs of the block dialog mask.

Add — Add task
button

Add a task to the Task Manager block. During deployment, each task is encapsulated as an execution
thread in the generated code. The properties of the thread are taken from the Main parameters for

 Task Manager

1-155

that task. During simulation, the task uses a combination of the Main and Simulation parameters
for that task.

Delete — Delete existing task
button

Remove a task from the Task Manager.

Dependencies

To enable this parameter, specify at least two tasks.

Main

Name — Name of task
Task1 (default) | character vector

Unique name of the task. The task name must only contain alphanumeric characters and underscores.

Type — Trigger type of task
Timer-driven (default) | Event-driven

Specify the task as timer-driven or event-driven. For more information on timer- and event-driven
tasks, see “Timer-Driven Task” and “Event-Driven Tasks”, respectively.

Dependencies

To enable this parameter, set Type to Timer-driven.

Period — Timer period
0.1 (default) | positive scalar

Specify the trigger time period for timer-driven tasks.

Core — Processor core to execute task
0 (default) | non-negative integer

Specify the number of the processor core where a task executes. For more information on selecting
cores and core execution visualizations, see “Multicore Execution and Core Visualization”.

Priority — Priority of task in scheduler
10 (default) | positive integer

Specify the schedulers priority for the event-driven task between 1 and 99. Higher priority tasks can
preempt lower priority tasks, and vice versa. The task priority range is limited by the hardware
attributes. For more information on task priority, see “Task Priority and Preemption”.

Dependencies

To enable this parameter, set Type to Event-driven.

Drop tasks that overrun — Drop tasks that overrun
off (default) | on

Select this parameter to force tasks to drop, rather than catch up, following an overrun instance. For
more information on task overruns, see “Task Overruns and Countermeasures”.

1 Blocks

1-156

Note No more than 2 instances of a task can overrun execution when Drop tasks that overrun
is set to off. Any additional task instances that overrun drop automatically.

Simulation

Play recorded task execution sequence — Enable playback from file
off (default) | on

Select this parameter for the Task Manager block to play back the recorded execution data provided
from the specified File name parameter. For more information on replaying task execution, see “Task
Execution Playback Using Recorded Data”.

Specify task duration via — Source of task execution time
Dialog (default) | Input port | Record task execution statistics

Specify the source of the timing information for the task execution.

• Dialog - Use a normally distributed probabilistic model with Mean, Deviation, Min, and Max
defined in the block dialog mask.

• Input port – When set from Input port, the block input port dynamically defines the execution
duration.

• Record task execution statistics – Use a normally distributed probabilistic model with
mean and deviation provided in file specified by File name.

For more information on configuring task duration, see “Task Duration”.

Task duration settings

Add — Adds distribution
button

Adds a distribution to the set of normal distributions that generates an execution duration. For more
information on configuring task duration, see “Task Duration”.

Note Only a maximum five distributions can be assigned to a single task.

Delete — Remove distribution
button

Remove a distribution from the set of normal distributions.

Percent — Likelihood of distribution
100 (default) | positive scalar

Specify the likelihood of each normal distribution. The Percent weighted sum of normal distributions
determines the task duration likelihood. For more information on configuring task duration, see “Task
Duration”.

Note The sum of Percent for all the distributions in a single task must equal 100.

 Task Manager

1-157

Mean — Mean task duration in simulation
1e-06 (default) | positive scalar

Specify the mean duration of the task during simulation of the task. The simulated task duration uses
a normal distribution with a specified Mean and SD parameter values as a first-order approximation
of the task behavior. For more information on configuring task duration, see “Task Duration”.

SD — Standard deviation of task duration in simulation
0 (default) | positive scalar

Specify the standard deviation duration of the task during simulation of the task. The simulated task
duration uses a normal distribution with a specified Mean and SD as a first-order approximation of
the task behavior. For more information on configuring task duration, see “Task Duration”.

Min — Lower limit of task duration
1e-06 (default) | positive scalar

Lower limit of a task duration distribution. For more information on configuring task duration, see
“Task Duration”.

Max — Upper limit of task duration
1e-06 (default) | positive scalar

Upper limit of a task duration distribution. For more information on configuring task duration, see
“Task Duration”.

File name — File containing diagnostic scheduling data
filepath

The data in this file specifies the Mean and SD parameter values. When the Play recorded task
execution sequence parameter is selected, the specified CSV file provides the explicit task
execution timing. The CSV file contains the diagnostic data of the task scheduler previously recorded
from the hardware board. For more information on configuring task duration, see “Task Duration”.

Dependencies

To enable this parameter, set the Specify task duration via parameter to Recorded task
execution statistics.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

To automatically generate C code for your design, and execute on an SoC device, use the SoC
Builder tool. To generate and execute C code for your SoC models, Embedded Coder features are
required. For more information on generating code for SoC designs, see “Generate SoC Design”.

The tasks in the Task Manager block execute as threads in the generated code. The task parameters
in the Task Manager block specify the priority and execution core of the thread.

See Also
I/O Data Source | Memory Channel

1 Blocks

1-158

Topics
“Get Started with SoC Blocks on MCUs”
“What is Task Execution?”
“Task Duration”

Introduced in R2019a

 Task Manager

1-159

Proxy Task
A placeholder for a task in your application
Library: SoC Blockset / Processor Task Execution

Description
The Proxy Task block simulates the effect of a timer-driven task in your SoC application without an
explicit implementation. This block can be used as a placeholder for timer-driven tasks to be
developed in the future, or implemented simultaneously by another developer.

When added to your processor reference Model block, it causes the processor model, when set to
schedule rates by ports, to display a periodic event port with a sample time equal to Sample Time
parameter. Connect the periodic event port to a timer-driven task output port on the Task Manager
block.

Ports
Input

Port_1 — Function-call from Task Manager block
scalar

A function-call signal that triggers the Proxy Task block when operating as an event-driven task.
Dependencies

To enable this port, set the Type property to Event-driven.
Data Types: function-call

Parameters
Type — Type of task
Timer-driven (default) | Event-driven

Select the type of task as either Timer-driven or Event-driven.

Sample Time — Sample time
1 (default) | positive scalar

Sample time of the block.

Note

• The Sample Time of the Proxy Task block must match the sample time of the corresponding
timer-driven task from the Task Manager block.

1 Blocks

1-160

• The Sample Time of the Proxy Task block should be unique within the model. When other blocks
in the model use the same sample time, the duration of the task defined by Proxy Task block
cannot be guaranteed in code generation.

Dependencies

To enable this parameter, set the Type property to Timer-driven.

See Also
Task Manager | Testbench Task

Topics
“Timer-Driven Task”

Introduced in R2019b

 Proxy Task

1-161

Event Source
Simulate and playback recorded task events
Library: SoC Blockset / I/O Data Source and Sink

Description
The Event Source block, connected to the Task Manager block, enables you to simulate tasks events
in your Simulink model. Task timing data can be provided from the block mask, an external file, or
from an input port driven by other model signals.

Ports
Input

data — Input data
numeric vector

Input data, specified as a numeric vector. The block converts this data into an event that corresponds
to the rate of the input data. You can use this event to drive an event-driven task in the Task Manager
block.

Dependencies

To enable this port, set the Input parameter to From input port.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

Output

event — Task event signal
scalar

This port sends a task event signal that triggers the Task Manager block to execute the associated
event-driven task.
Data Types: rteEvent

Parameters
Input — Source of input data
From dialog (default) | From input port | From timeseries object

Set the input data source for the block by selecting one of these values.

• From dialog — Input a one-dimensional array of data by using a function. Specify this function
for the Value parameter.

1 Blocks

1-162

• From input port — Input data and signals using input ports on the block.
• From timeseries object — Input data and time values using a timeseries object that you

created in MATLAB. For more information see “Time Series Objects and Collections”.

Sample time — Time interval of sampling
-1 (default) | nonnegative scalar

Specify a discrete time interval, in seconds, at which the block outputs data.

Dependencies

To enable this parameter, set the Input parameter to From dialog.

Object name — Name of timeseries object
[] (default) | timeseries object

Specify a timeseries object. This timeseries object provides the input data for the block. For
more information about time series objects, see “Time Series Objects and Collections”.

Dependencies

To enable this parameter, set the Input parameter to From timeseries object.

See Also

Introduced in R2020b

 Event Source

1-163

IO Data Sink
Record, output, or terminate input message
Library: SoC Blockset / I/O Data Source and Sink

Description
The IO Data Sink block records, outputs, or terminates the received input message signal. The input
of this block connects to the output of the TCP Write, UDP Write, or Register Write block. This block
enables you to save the received input data to a file that you can play back using the IO Data Source
block in the model. You can also terminate the signal or output the signals through an output port
which can be fed as an input to IO Data Source block.

Ports
Input

msg — SoC message data
numeric vector

This port receives the data vector from the msg port of the processor io blocks, which includes
Stream WriteTCP Write, UDP Write, or Register Write blocks.
Data Types: SoCData

Output

data — Output data
numeric vector

Output data, returned as a numeric vector. The block converts the received input message into a data
signal.
Dependencies

To enable this port, set the Output parameter to To output port.
Data Types: uint32 | double | single | int8 | uint8 | int16 | uint16 | int32 | int64 | uint64 |
Boolean | fixedpoint

length — Length of output data
nonnegative scalar

Length of output data, returned as a nonnegative scalar.
Dependencies

To enable this port, set the Output parameter to To output port.
Data Types: double

1 Blocks

1-164

valid — Indication of valid data
Boolean scalar

Control signal that indicates whether the output data is valid. When this value is 1 (true), the value on
the output data port is valid.

Dependencies

To enable this port, set the Output parameter to To output port.
Data Types: Boolean

done — Completion of data streaming
Boolean scalar

When done is 1, the block has no more stream output data to return in the data port. When done is
0, the block has more stream data to return in the data port.

Dependencies

To enable this port, set the Device type parameter to Stream.
Data Types: Boolean

event — Task event signal
scalar

This port sends a task event signal that triggers the Task Manager block to execute the associated
event-driven task.

Dependencies

To enable this port, set the Show port parameter to Data and Event.
Data Types: rteEvent

Parameters
Output — Sink of output data from block
To file (default) | To output port | To terminator

Set the sink of output data from the block by selecting one of these values.

• To file — Save output data to a file.
• To output port — Output data and signals by using output ports on the block.
• To terminator — Terminate the received input signal.

Device type — Device type selection
UDP (default) | TCP | Register | Stream

Select a device type to enable the corresponding input data port.

• UDP — Enable the msg input port to receive UDP data as message from a msg port of UDP Write
block.

• TCP — Enable the msg input port to receive TCP data as message from a msg port of TCP Write
block.

 IO Data Sink

1-165

• Register — Enable the msg input port to receive Register data as message from a msg port of
Register Write block.

• Stream — Enable the msg input port to receive Stream data as message from a msg port of
Stream Write block.

Show port — Enable output ports
Data (default) | Data and Event

Select one of these values to enable the corresponding output ports towards the writing source.

• Data — Enable only the msg input port.
• Data and event — Enable the msg input and event output ports.

Number of buffers — Number of data buffers
8 (default) | nonnegative scalar

Specify the number of data elements to store in the data queue. This parameter must match the
Number of buffers parameter specified in the Memory Channel block.
Dependencies

To enable this parameter, set the Device type parameter to Stream.

Sample time — Time interval of sampling
-1 (default) | nonnegative numeric scalar

Specify a discrete time interval, in seconds, at which the block outputs data. The default value -1
inherits the sample time from the solver used for simulating the model.

Dataset name — Name of data file
no default | file path

Specify the full path to where you want to save the file on the host PC. This block saves the output
data as a TGZ file. You can import this file into the model by using the IO Data Source block.
Dependencies

To enable this parameter, set the Output parameter to To file.

Source name — Name of dataset
no default

Specify a name for the output data source in which to save the data in the dataset file.
Dependencies

To enable this parameter, set the Output parameter to To file.

Data type — Data type of output data
uint32 (default) | double | single | int8 | uint8 | int16 | uint16 | int32 | int64 | uint64 |
boolean | fixedpoint

Select the data type of the output data. This value must match the data type of the input data.
Dependencies

To enable this parameter, set the Output parameter to To file or To output port.

1 Blocks

1-166

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

To automatically generate C code for your design, and execute on an SoC device, use the SoC
Builder tool. To generate and execute C code for your SoC models, Embedded Coder features are
required. For more information on generating code for SoC designs, see “Generate SoC Design”.

Embedded Coder does not generate code for this block. In the generated code, the device I/O
connects directly to the TCP Write, UDP Write, or Register Write block.

See Also
IO Data Source | Register Write | Stream Write | TCP Write | Task Manager | UDP Write

Introduced in R2019a

 IO Data Sink

1-167

IO Data Source
Play back recorded data
Library: SoC Blockset / I/O Data Source and Sink

Description
The IO Data Source block enables you to import recorded hardware IO data and play it back in your
Simulink model. The block converts the input data into a message signal that you can give as input to
the TCP Read, UDP Read, Stream Read, or Register Read blocks, depending on the device type you
choose. The playback of hardware IO data in your Simulink model helps you develop models with
better accuracy than models developed by using randomly generated data during simulation.

When you develop models that use real hardware IO data during deployment, you can choose to use
randomly generated synthetic data as hardware IO data in simulation. As physical hardware data
accounts for various effects like data loss, time delay, and so on. If you use synthetic data as hardware
IO data in simulation for such models, it leads to unexpected results when you deploy it in the
hardware board. To evaluate and verify such models, using real hardware IO data during simulation
is recommended. For more information on how to record hardware IO data and save it to your host
computer, see the soc.recorder object.

Note If you have a IO Data Source block with Input set to From file, associated with a Timer-
driven Task Manager block in your model and you plan to use a fixed-step solver, then enter a step
size value lesser than the value set for the Period parameter in the Task Manager block. For
example, suppose the value of Period specified in the Task Manager block is 0.1, then choose a
fixed-step size less than 0.1.

Ports
Input

data — Input data
numeric vector

Input data, specified as a numeric vector. The block converts this data into a bus signal of the specific
device type specified by the Device type parameter. Match the data type of this input data with the
data type you select in the Data type parameter. The output bus signal consists of data values, length
of data, and valid status of data.

Dependencies

To enable this port, set the Input parameter to From input port.
Data Types: single | double | int8 | int16 | int32 | int64 | uint8 | uint16 | uint32 | uint64 |
Boolean | fixed point

1 Blocks

1-168

length — Length of input data
nonnegative scalar

Length of input data, specified as a nonnegative scalar.
Dependencies

To enable this port, set the Input source parameter to From input port.
Data Types: uint32

valid — Valid data signal
Boolean scalar

When valid is 1, the block captures the input data from the data and length ports. When valid is 0,
the block considers the input data as invalid and does not capture it.
Dependencies

To enable this port, set the Input source parameter to From input port.
Data Types: Boolean

done — Notification of freed buffer in memory
False (default) | True

This message port receives a notification from the connected Memory Channel or IO Data Sink block
that a read transaction completed, and that a buffer in memory is available for writing.
Dependencies

To enable this port, set the Device type parameter to Stream.
Data Types: Boolean

Output

event — Task event signal
scalar

This port sends a task event signal that triggers the Task Manager block to execute the associated
event-driven task.
Dependencies

To enable this port, set the Show port parameter to Event or Data and event.
Data Types: rteEvent

msg — SoC message data
numeric vector

This port sends the data vector as a message to the msg input port of processor I/O blocks, which
includes Register Read, Stream Read, UDP Read, and TCP Read blocks.
Dependencies

To enable this port, set the Show port parameter to Data or Data and Event.
Data Types: SoCData

 IO Data Source

1-169

Parameters
Input — Source of input data
From file (default) | From dialog | From input port | From timeseries object

Set the input data source for the block by selecting one of these values.

• From file — Read data from a recorded data file at the same time interval at which it was
recorded on the hardware board.

• From dialog — Input a one-dimensional array of data by using a function. Specify this function
for the Value parameter.

• From input port — Input data and signals using input ports on the block.
• From timeseries object — Input data and time values using a timeseries object that you

created in MATLAB. For more information see “Time Series Objects and Collections”.

Value — Value of source data
uint32(1:1024) (default) | function to generate input data

Specify a MATLAB function that creates a row vector of numeric data. This row vector is captured as
the input data for the block.

Dependencies

To enable this parameter, set the Input parameter to From dialog.

Data type — Data type of input data
uint32 (default) | double | single | int8 | uint8 | int16 | uint16 | int32 | int64 | uint64 |
boolean | fixed point

Select the data type of the input data to be received by the data port.

Dependencies

To enable this parameter, set the Input parameter to From file.

Device type — Device type of input data source
UDP (default) | TCP | Register | Stream

Select a device type to enable the corresponding output data port.

• UDP — Enables the msg output port to output UDP data as a message.
• TCP — Enables the msg output port to output TCP data as a message.
• Register — Enables the msg output port to output Register data as a message.
• Stream — Enables the msg output port to output Stream data as a message.

Dependencies

To enable this parameter, set the Input parameter to From input port or From dialog.

Sample time — Time interval of sampling
-1 (default) | nonnegative scalar

Specify a discrete time interval, in seconds, at which the block outputs data.

1 Blocks

1-170

Dependencies

To enable this parameter, set the Input parameter to From dialog.

Dimensions — Samples per frame
1024 (default) | nonnegative scalar

Specify the size of the input data. The block reads this number of samples per frame during reading
and playback in simulation.

Dependencies

To enable this parameter, set the Input parameter to From file.

Dataset name — Name of recorded file
no default | file path

Specify the full path to a recorded data file on the host PC or browse and select a file on the host PC.
This block supports only TGZ files created by using the SoC Blockset data recording API.

Dependencies

To enable this parameter, set the Input parameter to From file.

Source name — Name of dataset
no default

Specify the dataset source name you want to use as the input source available within the recorded
data specified in the Dataset name parameter. You can either type the name in the Source name
box or click Select to select the name from the list of sources available in the recorded data file.

Dependencies

To enable this parameter, set the Input parameter to From file.

Number of buffers — Number of data buffers
1024 (default) | nonnegative scalar

Specify the number of data elements to store in the input data queue.

Dependencies

To enable this parameter, set the Device type parameter to Stream.

Show port — Enable output ports
Data (default) | Event | Data and event

Select one of these values to enable the corresponding output ports.

• Data — Enable only the msg output port.
• Event — Enable only the event output port.
• Data and event — Enable the msg and event output ports.

Object name — Name of timeseries object
[] (default) | timeseries object

 IO Data Source

1-171

Specify a timeseries object. This timeseries object provides the input data for the block. For
more information about time series objects, see “Time Series Objects and Collections”.

Dependencies

To enable this parameter, set the Input parameter to From timeseries object.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

To automatically generate C code for your design, and execute on an SoC device, use the SoC
Builder tool. To generate and execute C code for your SoC models, Embedded Coder features are
required. For more information on generating code for SoC designs, see “Generate SoC Design”.

Embedded Coder does not generate code for this block. In the generated code, the device I/O
connects directly to the TCP Read, UDP Read, Stream Read, or Register Read block.

See Also
IO Data Sink | Register Read | Stream Read | TCP Read | Task Manager | UDP Read | soc.recorder

Introduced in R2019a

1 Blocks

1-172

Testbench Task
An external timer-driven task load on your SoC processor application
Library: SoC Blockset / Processor Testbench

Description
The Testbench Task block simulates a timer-driven task load external to your software application.
Using Testbench Task blocks, you can simulate the impact of your software application in the
presence of other processes that compete for execution time of the processor.

Note As part of a processor test bench, the Testbench Task block must be placed in the top-level of
your SoC model.

Ports
Input

Timer Task Function Call — Function-call input port from a timer-driven task
scalar

This port accepts a function-call event signal from a timer-driven task event port of the Task Manager
block.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Embedded Coder does not generate code for this block.

See Also
Proxy Task | Task Manager

Topics
“Timer-Driven Task”

Introduced in R2019b

 Testbench Task

1-173

Configuration Parameters

2

Hardware Implementation Pane

Hardware Implementation Pane Overview

Hardware board settings
Parameter Description Default Value
“Processing Unit” on page 2-8 Processor for model reference

block in the SoC model.
None

Design Mapping
Parameter Description Default Value
“View/Edit Task Map” on page
2-9

Open the task mapping tool. not applicable

2 Configuration Parameters

2-2

Parameter Description Default Value
“View/Edit Peripheral Map” on
page 2-9

Open the task mapping tool. not applicable

Task profiling in simulation
Parameter Description Default Value
“Show in SDI” on page 2-10 Show the task execution data

collected in simulation in the
Simulation Data Inspector
application.

on

“Save to file” on page 2-10 Save the task execution data to
a file.

on

“Overwrite file” on page 2-10 Overwrite the last task
execution data file.

off

Task profiling on processor
Parameter Description Default Value
“Show in SDI” on page 2-11 Show the task execution data

collected on hardware in the
Simulation Data Inspector
application.

off

“Save to file” on page 2-11 Save the task execution data to
a file.

off

“Overwrite file” on page 2-11 Overwrite the last task
execution data file.

off

“Instrumentation” on page 2-
11

Choose to perform code
instrumentation or Kernel
instrumentation.

Code

“Profiling duration” on page 2-
11

Choose whether to perform
Kernel profiling for an unlimited
or limited time duration.

Unlimited

Operating system/scheduler
Parameter Description Default Value
“Kernel latency” on page 2-13 Specify the Kernel latency of the

OS in simulation of a task.
0

 Hardware Implementation Pane

2-3

Task and memory simulation
Parameter Description Default Value
“Set seed for simulating task
duration and memory access”
on page 2-14

Set the random number
generator seed.

off

“Seed Value” on page 2-14 Specify the seed value for the
simulation of task duration
deviation.

default

“Cache input data at task start”
on page 2-14

Cache the input data at the start
of a task.

off

Board Parameters
Parameter Description Default Value
Device Address Network address of hardware

board or device.
192.168.1.10

Username Login username on hardware
board or device.

root

Password Login password on hardware
board or device.

root

Processor
Parameter Description Default Value
“Number of cores” on page 2-
15

Set the number of CPU cores in
the processor.

1

Board Options
Parameter Description Default Value
“Build Action” on page 2-17 Defines how SoC Builder tool

responds when you build your
model.

Build, load, and run

Clocking
Parameter Description Default Value
CPU Clock (MHz) on page 2-16 The CPU clock frequency in

MHz.
1000

2 Configuration Parameters

2-4

External Mode
Parameter Description Default Value
“Communication Interface” on
page 2-18

Transport layer used to
exchange data between the
development computer and
hardware.

TCP/IP

“Run external mode in a
background thread” on page 2-
18

Execute the external mode
engine in the generated code in
a background task.

disabled

“Port” on page 2-18 IP address port on hardware
board.

17725

“Verbose” on page 2-19 Enable view of the external
mode execution progress and
updates in the Diagnostic
Viewer.

disabled

FPGA design (top-level)
Parameter Description Default Value
“View/Edit Memory Map” on
page 2-20

Choose whether to perform
global synthesis or per IP core
synthesis.

Out of Context per IP

“Include a JTAG master for host-
based interaction” on page 2-
20

Use host-based scripts with an
integrated JTAG master on the
target platform.

on

“Include processing system” on
page 2-20

For processor-based platforms,
include the processing system.

on

“Interrupt latency (s)” on page
2-20

The latency from hardware
asserting an interrupt to the
start of the interrupt service
routine.

0.00001

“Register configuration clock
frequency (MHz)” on page 2-
20

The system configuration clock
drives the configuration register
interfaces for the vendor IP
cores in the system.

50

“IP core clock frequency (MHz)”
on page 2-20

The clock for all Simulink based
generated HDL IP cores.

100

FPGA design (mem controllers)
Parameter Description Default Value
“Controller clock frequency
(MHz)” on page 2-22

Frequency of datapath between
memory interconnect and
memory controller.

200

 Hardware Implementation Pane

2-5

Parameter Description Default Value
“Controller data width (bits)” on
page 2-22

Bit width of datapath between
memory interconnect and
memory controller.

64

“Bandwidth derating (%)” on
page 2-22

For every 100 clocks, will hold
off all transaction execution for
this number of clocks.

2.3

“First write transfer latency
(clocks)” on page 2-22

Number of clock cycles between
write request and start of
transfer.

4

“Last write transfer latency
(clocks)” on page 2-23

Number of clock cycles between
the end of write transfer and
completion of transaction.

4

“First read transfer latency
(clocks)” on page 2-23

Number of clock cycles between
read request and start of
transfer.

5

“Last read transfer latency
(clocks)” on page 2-23

Number of clock cycles between
the end of read transfer and
completion of transaction.

1

FPGA design (mem channels)
Parameter Description Default Value
“Interconnect clock frequency
(MHz)” on page 2-24

Frequency of the master
datapath to the interconnect
controller in MHz.

200

“Interconnect data width (bits)”
on page 2-24

Data width of master datapath
to interconnect controller in
bits.

64

“Interconnect FIFO depth (num
bursts)” on page 2-24

Maximum number of bursts that
can be buffered before data is
dropped.

12

“Interconnect almost-full depth”
on page 2-24

When the almost full depth is
reached, the attached channel
protocol interface block asserts
back pressure to the data
source.

8

FPGA design (debug)
Parameter Description Default Value
“Memory channel diagnostic
level” on page 2-25

The internal operation of the
memory channel can be
instrumented for debug or
diagnostic analysis.

Basic diagnostic signals

2 Configuration Parameters

2-6

Parameter Description Default Value
“Include AXI interconnect
monitor” on page 2-25

Gather performance metrics of
the memory interconnect such
as data throughput, latency, and
number of bursts executed.

off

“Trace capture depth” on page
2-25

Maximum number of Trace
entries to be logged in trace
mode

1024

 Hardware Implementation Pane

2-7

Hardware Board Settings

Processing Unit
Choose the processor in the MCU onto which to deploy the model reference block in the SoC model.
The top level SoC model is set to None.

Settings

Default: None

See Also
“Multiprocessor Execution” | “Run Multiprocessor Models in External Mode”

2 Configuration Parameters

2-8

Design Mapping

View/Edit Task Map
Open the Task Mapping tool to map tasks in the model to available hardware interrupt sources for the
selected hardware board.

View/Edit Peripheral Map
Open the Peripheral Configuration tool to map the simulation parameters of interface blocks to
deployed configuration values of peripherals on the selected hardware board.

See Also

 Design Mapping

2-9

Task Profiling in Simulation

Show in SDI
Show task execution data collected in simulation in the Simulation Data Inspector (SDI). For more
information on visualizing tasks in SDI, see “Task Visualization in Simulation Data Inspector”.

Settings

Default: off

Save to file
Save task execution data to a file. For more information on recording task execution data, see
“Recording Tasks for Use in Simulation”.

Settings

Default: off

Overwrite file
Overwrite last task execution data file. For more information on recording task execution data, see
“Recording Tasks for Use in Simulation”.

Settings

Default: off

See Also

2 Configuration Parameters

2-10

Task Profiling on Processor

Show in SDI
Show the task execution data collected on a processor in the Simulation Data Inspector (SDI)
application. For more information on visualizing tasks in the SDI application, see “Task Visualization
in Simulation Data Inspector”.

Default: off

Save to file
Save task execution data to a file. For more information on recording task execution data, see
“Recording Tasks for Use in Simulation”.

Default: off

Overwrite file
Overwrite the last task execution data file. For more information on recording task execution data,
see “Recording Tasks for Use in Simulation”.

Default: off

Instrumentation
Choose the instrumentation method using which task execution data has to be collected from
processor to display on SDI. For more information, see “Kernel Instrumentation Profiler” and “Code
Instrumentation Profiler”.

Default: Code

Profiling duration
Choose the profiling duration for Kernel profiling.

If you select Kernel to specify Kernel profiling, set Profiling duration to Unlimited or Limited.

• Unlimited — This option performs Kernel profiling on the hardware and streams it to the host
PC for an unlimited time duration. Kernel profiling for an unlimited time duration on hardware
with low free disk storage or a model with high task rates can result in packet loss of profiling
data streamed from the hardware. This packet loss depends on the free memory available on the
host PC on which you run MATLAB.

• Limited — This option performs Kernel profiling on the hardware and streams it to host PC for a
limited time duration. Kernel profiling for a limited time duration on hardware does not result in
packet loss of profiling data streamed from hardware. The maximum time duration for limited
Kernel profiling depends on the RAM and free disk storage available on the hardware board on
which Kernel profiling is performed.

 Task Profiling on Processor

2-11

Default: Unlimited

2 Configuration Parameters

2-12

Kernel latency
Sets the simulated delay in the start of a task expected by the kernel latency of the operating system
(OS). For more information on kernel latency, see “Effect Kernel Latency on Task Execution”.

Settings
Default: default

See Also

 Kernel latency

2-13

Task and Memory Simulation

Set seed for simulating task duration and memory access
Enable explicit specification of random number seed for task duration simulation.

Settings

Default: off

Seed Value
Random number generator seed for the simulation of task duration deviation of the Task Manager
block.

Settings

Default: default

Cache input data at task start
Cache the data from signals at the start of task execution. Otherwise, evaluate with the signal data at
the end of the task execution.

See Also
Task Manager

2 Configuration Parameters

2-14

Processor

Number of cores
Set the number of CPU cores in the processor.

Settings

Default: 1, positive scalar

 Processor

2-15

Clocking

CPU Clock (MHz)
The frequency of the CPU core clock in MHz.

Settings

Default: 1000

2 Configuration Parameters

2-16

Build Action
Defines how SoC Builder tool builds your model.

Settings
Default: Build, load, and run

Build, load, and run
With this option, launching SoC Builder:

1 Generates code from the model.
2 Compiles and links the code into an executable with libraries.
3 Loads the executable and libraries into the hardware board.
4 Runs the executable in the hardware board.

Build
With this option, launching SoC Builder:

1 Generates code from the model.
2 Compiles and links the code into an executable with libraries.

This option does not load and run the executable on the hardware board.

See Also
SoC Builder

 Build Action

2-17

External Mode

Communication Interface
Select the transport layer that external mode uses to exchange data between the host computer and
the target hardware.

Settings

Default:TCP/IP, XCP on TCP/IP

Run external mode in a background thread
Force the external mode task in the generated code to execute in a background thread.

When external mode runs in the model thread, external mode executes after each execution step of
the model and collects data at the base rate of the model. When model code consumes most of the
thread execution time in each time step, external mode execution overruns into the next time step.
This overrun delays the start of the next model execution step and degrades the real-time behavior of
the deployed model.

You can configure external mode to run in a background thread. When external mode runs in a
background thread, it executes in the time between the end of model code of one time step and the
start of the next time step. By not blocking the model step, external mode can be used in systems that
require real-time execution. This configuration enables direct observation of the deployed model on
the hardware board as it would behave in standalone operation.

When model code consumes most of the execution time for each time step, external mode in the
background thread starves for execution time. Without sufficient time to collect and transmit data
from the hardware board to the host computer, data packets drop. This case results in gaps in the
data logging.

To help avoid dropped data packets in deployed models where real-time execution takes priority over
data logging, configure external mode to operate as a background task.

Note Enabling the Run external mode in a background thread parameter is not
recommended for models that use a very small time step or that might encounter task overruns.
These situations can cause Simulink to become unresponsive.

Settings

Default:disabled

Port
Enter the port for the IP address of the hardware board.

Settings

Default: 17725

2 Configuration Parameters

2-18

Verbose
To view the external mode execution progress and updates in the Diagnostic Viewer or in the
MATLAB command window, select this check box.

Settings

Default: disabled

 External Mode

2-19

FPGA design (top-level)

View/Edit Memory Map
Click to view and edit the FPGA memory map.

Include a JTAG master for host-based interaction
Use host-based scripts with an integrated JTAG master on the target platform to initialize
configuration registers and memory regions in the generated design. You can also use it to interact
with the design while running in order to read back diagnostic information. The JTAG master can be
used instead of or in addition to an embedded processor on the target platform.

Settings

Default: on, off

Include processing system
For processor-based platforms, include the processing system. The processing system must be
included when using Embedded Coder to generate embedded software.

Settings

Default: off, on

Interrupt latency (s)
The latency from hardware asserting an interrupt to the start of the interrupt service routine.

Settings

Default: 0.00001

Register configuration clock frequency (MHz)
The system configuration clock drives the configuration register interfaces for the vendor IP cores in
the system. User-authored Simulink IP cores will utilize the parameter below for its configuration
register bus.

Settings

Default: 50

IP core clock frequency (MHz)
The clock for all Simulink-based generated HDL IP cores. A single clock drives all IP and is used for
both datapath and configuration register logic.

2 Configuration Parameters

2-20

Settings

Default: 100

 FPGA design (top-level)

2-21

FPGA design (mem controllers)
Memory controller pa

Controller clock frequency (MHz)
Frequency of datapath between memory interconnect and memory controller.

The clock rate used to drive transactions to the external memory. The controller clock frequency
determines the overall system bandwidth for external memory that must be shared among all the
masters in the model.

Settings

Default: 200

Controller data width (bits)
Set the width, in bits, of the datapath between the memory controller and the memory interconnect.

Settings

Default: 64

Bandwidth derating (%)
Model memory transaction inefficiencies specified by a derating percentage value. For every 100
clocks, memory transaction execution is paused for the number of clocks equal to Bandwidth
derating. To set this parameter, measure the maximum bandwidth on your board and reflect the
bandwidth derating from your board in this parameter. See an example in “Analyze Memory
Bandwidth Using Traffic Generators”.

Settings

Default: 2.3

First write transfer latency (clocks)
Specify the delay, in clock cycles, between a write request and the start of a transfer.

This delay is the number of clock cycles between making a request to the memory controller and until
it returns a response. It is reflected in the Logic Analyzer waveforms as the time that the memory
controller state remains as BurstAccepted. For more information about viewing waveforms in
simulation, see “Buffer and Burst Waveforms”.

To set this value, measure the clock cycles between the burst-request and start of transfer on your
board. For instructions for extracting this information from a hardware execution, see “Configuring
and Querying the AXI Interconnect Monitor”.

Settings

Default: 4

2 Configuration Parameters

2-22

Last write transfer latency (clocks)
Specify the delay in clock cycles between the end of a memory transfer and the end of a write
transaction.

To set this value, measure the clock cycles between the end of the burst and the completion of the
transaction on your board. For instructions for extracting this information from a hardware execution,
see “Configuring and Querying the AXI Interconnect Monitor”.

Settings

Default: 4

First read transfer latency (clocks)
Specify the delay, in clock cycles, between a read request and the start of a transfer.

This delay is the number of clock cycles between making a request to the memory controller and until
it returns a response. It is reflected in the Logic Analyzer waveforms as the time that the memory
controller state remains as BurstAccepted. For more information about viewing waveforms in
simulation, see “Buffer and Burst Waveforms”.

To set this value, measure the clock cycles between the burst-request and start of transfer on your
board. For instructions for extracting this information from a hardware execution, see “Configuring
and Querying the AXI Interconnect Monitor”.

Settings

Default: 5

Last read transfer latency (clocks)
Specify the delay in clock cycles between the end of a memory transfer and the end of a read
transaction.

To set this value, measure the clock cycles between the end of the burst and the completion of the
transaction on your board. For instructions for extracting this information from a hardware execution,
see “Configuring and Querying the AXI Interconnect Monitor”.

Settings

Default: 1

 FPGA design (mem controllers)

2-23

FPGA design (mem channels)

Interconnect clock frequency (MHz)
Frequency of the master datapath to the interconnect controller in MHz.

Settings

Default: 200

Interconnect data width (bits)
Data width of master datapath to interconnect controller in bits.

Settings

Default: 64

Interconnect FIFO depth (num bursts)
Specify depth of data FIFO, in units of bursts. When the writer has no buffers to write to, the FIFO
can absorb data until a buffer becomes available. This value is the maximum number of bursts that
can be buffered before data gets dropped.

Settings

Default: 12

Interconnect almost-full depth
Specify a number that asserts a backpressure signal from the channel to the data source. To avoid
dropping data, set a high watermark, allowing the data producer enough time to react to
backpressure. This number must be smaller than the FIFO depth.

Settings

Default: 8

2 Configuration Parameters

2-24

FPGA design (debug)

Memory channel diagnostic level
The internal operation of the memory channel can be instrumented for debug or diagnostic analysis.
When enabled a diag output port will be added to the block.

Settings

Default: Basic diagnostic signals, No debug

Include AXI interconnect monitor
Gather performance diagnostics of the AXI memory interconnect such as data throughput, latency,
and number of bursts executed. You can use the AXI master or a processing system on the target to
gather the information. When using an AXI master, a host-based script can plot the data using
MATLAB. These figures can then be compared against the simulation results.

Settings

Default: off

Trace capture depth
Maximum number of Trace entries to be logged in trace mode, choose the depth in powers of 2.

Settings

Default: 1024

 FPGA design (debug)

2-25

Functions

3

getData
Get data from file reader

Syntax
rd = getData(fr,sourceName)

Description
rd = getData(fr,sourceName) returns the data recorded from the specified source in the file
reader. The fr input is an socFileReader object. The sourceName is the source name specified
when saving the file by using the save object function.

Examples

Read Data from File Reader

Create a file reader to read data from the specified TGZ-compressed file.

fr = socFileReader('UDPDataReceived.tgz');

Get the data of a specified source from the file using the getData function.

rd = getData(fr,'UDPDataReceived-Port25000');

Input Arguments
fr — File reader
socFileReader object

File reader, returned as an socFileReader object.

sourceName — Name of recorded data source
character vector

Name of a recorded data source in fr, specified as a character vector. The function returns the
recorded data of this specified source.

Output Arguments
rd — Data from recorded source
timeseries object

Data from recorded source, returned as a timeseries object.
Data Types: timeseries

See Also
record | save | soc.recorder

3 Functions

3-2

Introduced in R2019a

 getData

3-3

setup
Set up hardware for data recording

Syntax
setup(dr)

Description
setup(dr) sets up any input sources on the SoC hardware board represented by dr to record data.
dr is a data recording session on SoC hardware board created using soc.recorder. You must have
added at least one source to dr, using the addSource function.

Examples

Record Data From SoC Hardware Board

Create a connection from MATLAB to the specified SoC hardware board using the IP address,
username, and password of the board.

hw = socHardwareBoard('Xilinx Zynq ZC706 evaluation kit','hostname','192.168.1.18','username','root','password','root');

Create a data recording session on the SoC hardware board by using the hw object. The resulting
soc.recorder object represents the data recording session on the SoC hardware board.

dr = soc.recorder(hw)

dr =

 DataRecorder with properties:

 HardwareName: 'Xilinx Zynq ZC706 evaluation kit'
 Sources: {}
 Recording: false

List the input sources added to the data recording session.

dr.Sources(hw)

ans =

 1×0 empty cell array

By default, soc.recorder objects have no added input sources. To add an input source to the data
recording session, first create an input source object by using the soc.iosource function. For this
example, create an User Datagram Protocol (UDP) source object.

udpSrc = soc.iosource(hw,'UDP Receive')

udpSrc =

3 Functions

3-4

 soc.iosource.UDPRead with properties:

 Main
 LocalPort: 25000
 DataLength: 1
 DataType: 'uint8'
 ReceiveBufferSize: -1
 BlockingTime: 0
 OutputVarSizeSignal: false
 SampleTime: 0.1000
 HideEventLines: true

 Show all properties

Add this UDP source object to the data recording session by using the addSource object function.

addSource(dr,udpSrc,'UDPDataReceived-Port25000')

Verify the result by inspecting the Sources property of the soc.recorder object.

dr.Sources

ans =

 1×1 cell array

 {'UDPDataOnPort25000'}

Call the setup function to initialize all hardware peripheral input sources added to the data recording
session, and start the data recording process.

setup(dr)

Record data for 60 seconds on the SoC hardware board.

record(dr, 60);

Check the status of the data recording session by using the isRecording object function. The
recording status when data recording is in progress is 1.

recordingStatus = isRecording(dr)

recordingStatus =

 logical

 1

The recording status when data recording is complete is 0.

isRecording(dr)

recordingStatus =

 logical

 0

Save recorded data to a TGZ-compressed file.

 setup

3-5

save(dr,'UDPDataReceived','UDP Data Testing',{'Recorded On Zynq Board'})

This function saves the recorded data as the file UDPDataReceived.tgz in your working folder of
the host PC. You can read this file by using an socFileReader object in MATLAB or an IO Data
Source block in your Simulink model.

Remove the added source from the data recording session by using the removeSource object
function.

removeSource(dr,'UDPDataReceived-Port25000')

Verify the result by inspecting the Sources property of the soc.recorder object.

ans =

 1×0 empty cell array

Input Arguments
dr — Data recording session specified for SoC hardware board
soc.recorder object

Data recording session for specified SoC hardware board, specified as a soc.recorder object.

See Also
addSource | record | removeSource | soc.recorder

Introduced in R2019a

3 Functions

3-6

addSource
Add a input source to a data recording session

Syntax
addSource(dr,src,sourceName)

Description
addSource(dr,src,sourceName) adds the specified hardware input source, src to data recording
session, dr. dr is a data recording session on SoC hardware board created using soc.recorder.

Examples

Record Data From SoC Hardware Board

Create a connection from MATLAB to the specified SoC hardware board using the IP address,
username, and password of the board.

hw = socHardwareBoard('Xilinx Zynq ZC706 evaluation kit','hostname','192.168.1.18','username','root','password','root');

Create a data recording session on the SoC hardware board by using the hw object. The resulting
soc.recorder object represents the data recording session on the SoC hardware board.

dr = soc.recorder(hw)

dr =

 DataRecorder with properties:

 HardwareName: 'Xilinx Zynq ZC706 evaluation kit'
 Sources: {}
 Recording: false

List the input sources added to the data recording session.

dr.Sources(hw)

ans =

 1×0 empty cell array

By default, soc.recorder objects have no added input sources. To add an input source to the data
recording session, first create an input source object by using the soc.iosource function. For this
example, create an User Datagram Protocol (UDP) source object.

udpSrc = soc.iosource(hw,'UDP Receive')

udpSrc =

 addSource

3-7

 soc.iosource.UDPRead with properties:

 Main
 LocalPort: 25000
 DataLength: 1
 DataType: 'uint8'
 ReceiveBufferSize: -1
 BlockingTime: 0
 OutputVarSizeSignal: false
 SampleTime: 0.1000
 HideEventLines: true

 Show all properties

Add this UDP source object to the data recording session by using the addSource object function.

addSource(dr,udpSrc,'UDPDataReceived-Port25000')

Verify the result by inspecting the Sources property of the soc.recorder object.

dr.Sources

ans =

 1×1 cell array

 {'UDPDataOnPort25000'}

Call the setup function to initialize all hardware peripheral input sources added to the data recording
session, and start the data recording process.

setup(dr)

Record data for 60 seconds on the SoC hardware board.

record(dr, 60);

Check the status of the data recording session by using the isRecording object function. The
recording status when data recording is in progress is 1.

recordingStatus = isRecording(dr)

recordingStatus =

 logical

 1

The recording status when data recording is complete is 0.

isRecording(dr)

recordingStatus =

 logical

 0

Save recorded data to a TGZ-compressed file.

3 Functions

3-8

save(dr,'UDPDataReceived','UDP Data Testing',{'Recorded On Zynq Board'})

This function saves the recorded data as the file UDPDataReceived.tgz in your working folder of
the host PC. You can read this file by using an socFileReader object in MATLAB or an IO Data
Source block in your Simulink model.

Remove the added source from the data recording session by using the removeSource object
function.

removeSource(dr,'UDPDataReceived-Port25000')

Verify the result by inspecting the Sources property of the soc.recorder object.

ans =

 1×0 empty cell array

Input Arguments
dr — Data recording session specified for SoC hardware board
soc.recorder object

Data recording session for specified SoC hardware board, specified as a soc.recorder object.

src — Source object for specified input source
soc.iosource object

Source object for specified input source, specified as an soc.iosource object.

sourceName — Name of input source in the data recording session
character vector

Name of input source in the data recording session, specified as a character vector. The function uses
this name as the source name when the specified input source is recorded and saved on a dataset file.

Note Setting sourceName to 'all' errors as the sourceName 'all' is used to remove all input
sources added to a data recording session using the removeSource function.

See Also
removeSource | soc.iosource | soc.recorder

Introduced in R2019a

 addSource

3-9

removeSource
Remove input source from data recording session

Syntax
removeSource(dr,sourceName)

Description
removeSource(dr,sourceName) removes an already added input source from a data recording
session, dr.

Examples

Record Data From SoC Hardware Board

Create a connection from MATLAB to the specified SoC hardware board using the IP address,
username, and password of the board.

hw = socHardwareBoard('Xilinx Zynq ZC706 evaluation kit','hostname','192.168.1.18','username','root','password','root');

Create a data recording session on the SoC hardware board by using the hw object. The resulting
soc.recorder object represents the data recording session on the SoC hardware board.

dr = soc.recorder(hw)

dr =

 DataRecorder with properties:

 HardwareName: 'Xilinx Zynq ZC706 evaluation kit'
 Sources: {}
 Recording: false

List the input sources added to the data recording session.

dr.Sources(hw)

ans =

 1×0 empty cell array

By default, soc.recorder objects have no added input sources. To add an input source to the data
recording session, first create an input source object by using the soc.iosource function. For this
example, create an User Datagram Protocol (UDP) source object.

udpSrc = soc.iosource(hw,'UDP Receive')

udpSrc =

3 Functions

3-10

 soc.iosource.UDPRead with properties:

 Main
 LocalPort: 25000
 DataLength: 1
 DataType: 'uint8'
 ReceiveBufferSize: -1
 BlockingTime: 0
 OutputVarSizeSignal: false
 SampleTime: 0.1000
 HideEventLines: true

 Show all properties

Add this UDP source object to the data recording session by using the addSource object function.

addSource(dr,udpSrc,'UDPDataReceived-Port25000')

Verify the result by inspecting the Sources property of the soc.recorder object.

dr.Sources

ans =

 1×1 cell array

 {'UDPDataOnPort25000'}

Call the setup function to initialize all hardware peripheral input sources added to the data recording
session, and start the data recording process.

setup(dr)

Record data for 60 seconds on the SoC hardware board.

record(dr, 60);

Check the status of the data recording session by using the isRecording object function. The
recording status when data recording is in progress is 1.

recordingStatus = isRecording(dr)

recordingStatus =

 logical

 1

The recording status when data recording is complete is 0.

isRecording(dr)

recordingStatus =

 logical

 0

Save recorded data to a TGZ-compressed file.

 removeSource

3-11

save(dr,'UDPDataReceived','UDP Data Testing',{'Recorded On Zynq Board'})

This function saves the recorded data as the file UDPDataReceived.tgz in your working folder of
the host PC. You can read this file by using an socFileReader object in MATLAB or an IO Data
Source block in your Simulink model.

Remove the added source from the data recording session by using the removeSource object
function.

removeSource(dr,'UDPDataReceived-Port25000')

Verify the result by inspecting the Sources property of the soc.recorder object.

ans =

 1×0 empty cell array

Input Arguments
dr — Data recording session specified for SoC hardware board
soc.recorder object

Data recording session for specified SoC hardware board, specified as a soc.recorder object.

sourceName — Name of specified input source in data recording session
character vector

Name of specified input source in the data recording session, specified as a character vector.

Note You can specify sourceName as 'all' to remove all input sources added to a data recording
session.

See Also
soc.iosource | soc.recorder

Introduced in R2019a

3 Functions

3-12

record
Record data from hardware using data recorder object

Syntax
record(dr,duration)

Description
record(dr,duration) records hardware input data on the SoC hardware board represented by dr,
for the specified duration. dr is a data recording session on SoC hardware board created using
soc.recorder.

Examples

Record Data From SoC Hardware Board

Create a connection from MATLAB to the specified SoC hardware board using the IP address,
username, and password of the board.

hw = socHardwareBoard('Xilinx Zynq ZC706 evaluation kit','hostname','192.168.1.18','username','root','password','root');

Create a data recording session on the SoC hardware board by using the hw object. The resulting
soc.recorder object represents the data recording session on the SoC hardware board.

dr = soc.recorder(hw)

dr =

 DataRecorder with properties:

 HardwareName: 'Xilinx Zynq ZC706 evaluation kit'
 Sources: {}
 Recording: false

List the input sources added to the data recording session.

dr.Sources(hw)

ans =

 1×0 empty cell array

By default, soc.recorder objects have no added input sources. To add an input source to the data
recording session, first create an input source object by using the soc.iosource function. For this
example, create an User Datagram Protocol (UDP) source object.

udpSrc = soc.iosource(hw,'UDP Receive')

udpSrc =

 record

3-13

 soc.iosource.UDPRead with properties:

 Main
 LocalPort: 25000
 DataLength: 1
 DataType: 'uint8'
 ReceiveBufferSize: -1
 BlockingTime: 0
 OutputVarSizeSignal: false
 SampleTime: 0.1000
 HideEventLines: true

 Show all properties

Add this UDP source object to the data recording session by using the addSource object function.

addSource(dr,udpSrc,'UDPDataReceived-Port25000')

Verify the result by inspecting the Sources property of the soc.recorder object.

dr.Sources

ans =

 1×1 cell array

 {'UDPDataOnPort25000'}

Call the setup function to initialize all hardware peripheral input sources added to the data recording
session, and start the data recording process.

setup(dr)

Record data for 60 seconds on the SoC hardware board.

record(dr, 60);

Check the status of the data recording session by using the isRecording object function. The
recording status when data recording is in progress is 1.

recordingStatus = isRecording(dr)

recordingStatus =

 logical

 1

The recording status when data recording is complete is 0.

isRecording(dr)

recordingStatus =

 logical

 0

Save recorded data to a TGZ-compressed file.

3 Functions

3-14

save(dr,'UDPDataReceived','UDP Data Testing',{'Recorded On Zynq Board'})

This function saves the recorded data as the file UDPDataReceived.tgz in your working folder of
the host PC. You can read this file by using an socFileReader object in MATLAB or an IO Data
Source block in your Simulink model.

Remove the added source from the data recording session by using the removeSource object
function.

removeSource(dr,'UDPDataReceived-Port25000')

Verify the result by inspecting the Sources property of the soc.recorder object.

ans =

 1×0 empty cell array

Input Arguments
dr — Data recording session specified for SoC hardware board
soc.recorder object

Data recording session for specified SoC hardware board, specified as a soc.recorder object.

duration — Duration of recording session
positive scalar

Duration of recording session, specified as a positive scalar in seconds. Data is recorded on the
hardware board for the specified duration of time. You can check the status of the data recording
session by calling the isRecording object function.
Data Types: double

See Also
isRecording | setup | soc.recorder

Introduced in R2019a

 record

3-15

isRecording
Get data recording status

Syntax
recordingStatus = isRecording(dr)

Description
recordingStatus = isRecording(dr) returns the status of the data recording process on the
SoC hardware board represented by dr. dr is a data recording session on SoC hardware board
created using soc.recorder.

Examples

Record Data From SoC Hardware Board

Create a connection from MATLAB to the specified SoC hardware board using the IP address,
username, and password of the board.

hw = socHardwareBoard('Xilinx Zynq ZC706 evaluation kit','hostname','192.168.1.18','username','root','password','root');

Create a data recording session on the SoC hardware board by using the hw object. The resulting
soc.recorder object represents the data recording session on the SoC hardware board.

dr = soc.recorder(hw)

dr =

 DataRecorder with properties:

 HardwareName: 'Xilinx Zynq ZC706 evaluation kit'
 Sources: {}
 Recording: false

List the input sources added to the data recording session.

dr.Sources(hw)

ans =

 1×0 empty cell array

By default, soc.recorder objects have no added input sources. To add an input source to the data
recording session, first create an input source object by using the soc.iosource function. For this
example, create an User Datagram Protocol (UDP) source object.

udpSrc = soc.iosource(hw,'UDP Receive')

udpSrc =

3 Functions

3-16

 soc.iosource.UDPRead with properties:

 Main
 LocalPort: 25000
 DataLength: 1
 DataType: 'uint8'
 ReceiveBufferSize: -1
 BlockingTime: 0
 OutputVarSizeSignal: false
 SampleTime: 0.1000
 HideEventLines: true

 Show all properties

Add this UDP source object to the data recording session by using the addSource object function.

addSource(dr,udpSrc,'UDPDataReceived-Port25000')

Verify the result by inspecting the Sources property of the soc.recorder object.

dr.Sources

ans =

 1×1 cell array

 {'UDPDataOnPort25000'}

Call the setup function to initialize all hardware peripheral input sources added to the data recording
session, and start the data recording process.

setup(dr)

Record data for 60 seconds on the SoC hardware board.

record(dr, 60);

Check the status of the data recording session by using the isRecording object function. The
recording status when data recording is in progress is 1.

recordingStatus = isRecording(dr)

recordingStatus =

 logical

 1

The recording status when data recording is complete is 0.

isRecording(dr)

recordingStatus =

 logical

 0

Save recorded data to a TGZ-compressed file.

 isRecording

3-17

save(dr,'UDPDataReceived','UDP Data Testing',{'Recorded On Zynq Board'})

This function saves the recorded data as the file UDPDataReceived.tgz in your working folder of
the host PC. You can read this file by using an socFileReader object in MATLAB or an IO Data
Source block in your Simulink model.

Remove the added source from the data recording session by using the removeSource object
function.

removeSource(dr,'UDPDataReceived-Port25000')

Verify the result by inspecting the Sources property of the soc.recorder object.

ans =

 1×0 empty cell array

Input Arguments
dr — Data recording session specified for SoC hardware board
soc.recorder object

Data recording session for specified SoC hardware board, specified as a soc.recorder object.

Output Arguments
recordingStatus — Status of data recording session
false (0) | true (1)

Status of data recording session, returned as logical value of false (0) or true (1). This value is 1
when data recording is in progress and 0 when data recording is complete.

See Also
record | soc.recorder

Introduced in R2019a

3 Functions

3-18

save
Save recorded data from SoC hardware board to file on host PC

Syntax
save(dr,filename,description,tags)

Description
save(dr,filename,description,tags) saves the recorded data from the SoC hardware board
associated with soc.recorder object dr to a TGZ-compressed file, filename, on the host PC.

Examples

Record Data From SoC Hardware Board

Create a connection from MATLAB to the specified SoC hardware board using the IP address,
username, and password of the board.

hw = socHardwareBoard('Xilinx Zynq ZC706 evaluation kit','hostname','192.168.1.18','username','root','password','root');

Create a data recording session on the SoC hardware board by using the hw object. The resulting
soc.recorder object represents the data recording session on the SoC hardware board.

dr = soc.recorder(hw)

dr =

 DataRecorder with properties:

 HardwareName: 'Xilinx Zynq ZC706 evaluation kit'
 Sources: {}
 Recording: false

List the input sources added to the data recording session.

dr.Sources(hw)

ans =

 1×0 empty cell array

By default, soc.recorder objects have no added input sources. To add an input source to the data
recording session, first create an input source object by using the soc.iosource function. For this
example, create an User Datagram Protocol (UDP) source object.

udpSrc = soc.iosource(hw,'UDP Receive')

udpSrc =

 save

3-19

 soc.iosource.UDPRead with properties:

 Main
 LocalPort: 25000
 DataLength: 1
 DataType: 'uint8'
 ReceiveBufferSize: -1
 BlockingTime: 0
 OutputVarSizeSignal: false
 SampleTime: 0.1000
 HideEventLines: true

 Show all properties

Add this UDP source object to the data recording session by using the addSource object function.

addSource(dr,udpSrc,'UDPDataReceived-Port25000')

Verify the result by inspecting the Sources property of the soc.recorder object.

dr.Sources

ans =

 1×1 cell array

 {'UDPDataOnPort25000'}

Call the setup function to initialize all hardware peripheral input sources added to the data recording
session, and start the data recording process.

setup(dr)

Record data for 60 seconds on the SoC hardware board.

record(dr, 60);

Check the status of the data recording session by using the isRecording object function. The
recording status when data recording is in progress is 1.

recordingStatus = isRecording(dr)

recordingStatus =

 logical

 1

The recording status when data recording is complete is 0.

isRecording(dr)

recordingStatus =

 logical

 0

Save recorded data to a TGZ-compressed file.

3 Functions

3-20

save(dr,'UDPDataReceived','UDP Data Testing',{'Recorded On Zynq Board'})

This function saves the recorded data as the file UDPDataReceived.tgz in your working folder of
the host PC. You can read this file by using an socFileReader object in MATLAB or an IO Data
Source block in your Simulink model.

Remove the added source from the data recording session by using the removeSource object
function.

removeSource(dr,'UDPDataReceived-Port25000')

Verify the result by inspecting the Sources property of the soc.recorder object.

ans =

 1×0 empty cell array

Input Arguments
dr — Data recording session specified for SoC hardware board
soc.recorder object

Data recording session for specified SoC hardware board, specified as a soc.recorder object.

filename — File name
character vector

File name by which you want to save the recorded data from the SoC hardware board on your host
PC, specified as a character vector.

description — Description added to file
character vector

Description added to file, specified as character vector. Add a description to the file helps you identify
the data file when you read it using an socFileReader object. This input is optional.
Data Types: char

tags — Tags for data set
cell array

Tags for the data set, specified as cell array of character vectors. Adding tags to the file helps you
identify the different input sources when you read the file using an socFileReader object. This
input is optional.

See Also
soc.recorder | socFileReader

Introduced in R2019a

 save

3-21

socTaskTimes
Plot histogram of the task durations from a recorded Simulation Data Inspector run

Syntax
taskData = socTaskTimes(modelName,runName)
taskData = socTaskTimes(___ ,suppressPlot)

Description
taskData = socTaskTimes(modelName,runName) creates an array of structures, one element
for each task. Each structure contains the task name, task start times, task durations, and mean and
standard deviations of the task durations. The function also plots the histogram of task durations for
each task.

taskData = socTaskTimes(___ ,suppressPlot) to suppress the plot generated.

Input Arguments
modelName — Name of the Simulink model
string (default) | character array

Name of the Simulink model associated with run containing tasks.
Data Types: char | string

runName — Name of the Simulation Data Inspector run
string (default) | character array

Name of Simulation Data Inspector run containing a task.
Data Types: char | string

suppressPlot — Name of the Simulink model
"SuppressPlot" (default)

Suppress the automatic generation of task duration plots.
Data Types: char | string

Output Arguments
taskData — Task timing data and statistics
structure

Task timing and duration statistics, returned as a structure with the fields:

See Also
“Task Visualization in Simulation Data Inspector” | “Recording Tasks for Use in Simulation”

3 Functions

3-22

Introduced in R2019a

 socTaskTimes

3-23

soclib
Open the SoC Blockset block library

Syntax
soclib

Description
soclib opens the SoC Blockset block library.

Examples

View the SoC Blockset Library

This example shows how to open and view the SoC Blockset library.

Run the following command to open the SoC Blockset library in Simulink:

soclib

3 Functions

3-24

See Also
“Get Started with SoC Blockset”

Introduced in R2019a

 soclib

3-25

collectMemoryStatistics
Retrieve performance data from AXI interconnect monitor

Syntax
collectMemoryStatistics(profiler)

Description
collectMemoryStatistics(profiler) retrieves performance data from the AXI interconnect
monitor IP running on your hardware board. The profiler object represents a connection to that IP.
When the AXI interconnect monitor is configured in 'Profile' mode, call this function in a loop to
retrieve average transaction latency and counts of bursts and bytes while transactions are occurring.
In 'Trace' mode, call this function once after memory transactions are complete to retrieve detailed
memory transaction event data.

Examples

Configure and Query AXI Interconnect Monitor

The AXI interconnect monitor (AIM) is an IP core that collects performance metrics for an AXI-based
FPGA design. Create an socIPCore object to setup and configure the AIM IP, and use the
socMemoryProfiler object to retrieve and display the data.

For an example of how to configure and query the AIM IP in your design using MATLAB as AXI
Master, see “Analyze Memory Bandwidth Using Traffic Generators”. Specifically, review the
soc_memory_traffic_generator_axi_master.m script that configures and monitors the design
on the device.

The performance monitor can collect two types of data. Choose Profile mode to collect average
transaction latency and counts of bytes and bursts. In this mode, you can launch a performance plot
tool, and then configure the tool to plot bandwidth, burst count, and transaction latency. Choose
Trace mode to collect detailed memory transaction event data and view the data as waveforms.

Mode = 'Profile'; % or 'Trace'

To obtain diagnostic performance metrics from your generated FPGA design, you must set up a JTAG
connection to the device from MATLAB. Load a .mat file that contains structures derived from the
board configuration parameters. This file was generated by the SoC Builder tool. These structures
describe the memory interconnect and masters configuration such as buffer sizes and addresses. Use
the socHardwareBoard object to set up the JTAG connection.

load('soc_memory_traffic_generator_zc706_aximaster.mat');
hwObj = socHardwareBoard('Xilinx Zynq ZC706 evaluation kit','Connect',false);
AXIMasterObj = socAXIMaster(hwObj);

Configure the AIM. The socIPCore object provides a function that performs this initialization. Then,
create an socMemoryProfiler object to gather the metrics.

3 Functions

3-26

apmCoreObj = socIPCore(AXIMasterObj,perf_mon,'PerformanceMonitor','Mode',Mode);
initialize(apmCoreObj);
profilerObj = socMemoryProfiler(hwObj,apmCoreObj);

Retrieve performance metrics or signal data from a design running on the FPGA by using the
socMemoryProfiler object functions.

For 'Profile' mode, call the collectMemoryStatistics function in a loop.

NumRuns = 100;
for n = 1:NumRuns
 collectMemoryStatistics(profilerObj);
end

JTAG design setup time is long relative to FPGA transaction times, and if you have a small number of
transactions in your design, they might have already completed by the time you query the monitor. In
this case, the bandwidth plot shows only one sample, and the throughput calculation is not accurate.
If this situation occurs, increase the total number of transactions the design executes.

For 'Trace' mode, call the collectMemoryStatistics function once. This function stops the IP
from writing transactions into the FIFO in the AXI interconnect monitor IP, although the transactions
continue on the interconnect. Set the size of the transaction FIFO, Trace capture depth, in the
configuration parameters of the model, under Hardware Implementation > Target hardware
resources > FPGA design (debug).

collectMemoryStatistics(profilerObj);

Visualize the performance data by using the plotMemoryStatistics function. In 'Profile'
mode, this function launches a performance plot tool, and you can configure the tool to plot
bandwidth, burst count, and average transaction latency. In 'Trace' mode, this function opens the
Logic Analyzer tool to view burst transaction event data.

plotMemoryStatistics(profilerObj);

Input Arguments
profiler — Memory profiler object
socMemoryProfiler object

Memory profiler object, specified as an socMemoryProfiler object that provides access to the AXI
memory interconnect IP running on the hardware board.

See Also
“Memory Performance Information from FPGA Execution”

Topics
“Analyze Memory Bandwidth Using Traffic Generators”

Introduced in R2019a

 collectMemoryStatistics

3-27

plotMemoryStatistics
Plot performance data obtained from AXI interconnect monitor

Syntax
plotMemoryStatistics(profiler)

Description
plotMemoryStatistics(profiler) generates visualizations of the performance data from the
AXI interconnect monitor IP running on your hardware board. The profiler object represents a
connection to that IP. When the AXI interconnect monitor is configured in 'Profile' mode, this
function launches a performance plot tool. You can configure the tool to plot bandwidth, burst count,
and average transaction latency. In 'Trace' mode, this function opens the Logic Analyzer to view
detailed memory transaction event data.

Examples

Configure and Query AXI Interconnect Monitor

The AXI interconnect monitor (AIM) is an IP core that collects performance metrics for an AXI-based
FPGA design. Create an socIPCore object to setup and configure the AIM IP, and use the
socMemoryProfiler object to retrieve and display the data.

For an example of how to configure and query the AIM IP in your design using MATLAB as AXI
Master, see “Analyze Memory Bandwidth Using Traffic Generators”. Specifically, review the
soc_memory_traffic_generator_axi_master.m script that configures and monitors the design
on the device.

The performance monitor can collect two types of data. Choose Profile mode to collect average
transaction latency and counts of bytes and bursts. In this mode, you can launch a performance plot
tool, and then configure the tool to plot bandwidth, burst count, and transaction latency. Choose
Trace mode to collect detailed memory transaction event data and view the data as waveforms.

Mode = 'Profile'; % or 'Trace'

To obtain diagnostic performance metrics from your generated FPGA design, you must set up a JTAG
connection to the device from MATLAB. Load a .mat file that contains structures derived from the
board configuration parameters. This file was generated by the SoC Builder tool. These structures
describe the memory interconnect and masters configuration such as buffer sizes and addresses. Use
the socHardwareBoard object to set up the JTAG connection.

load('soc_memory_traffic_generator_zc706_aximaster.mat');
hwObj = socHardwareBoard('Xilinx Zynq ZC706 evaluation kit','Connect',false);
AXIMasterObj = socAXIMaster(hwObj);

Configure the AIM. The socIPCore object provides a function that performs this initialization. Then,
create an socMemoryProfiler object to gather the metrics.

3 Functions

3-28

apmCoreObj = socIPCore(AXIMasterObj,perf_mon,'PerformanceMonitor','Mode',Mode);
initialize(apmCoreObj);
profilerObj = socMemoryProfiler(hwObj,apmCoreObj);

Retrieve performance metrics or signal data from a design running on the FPGA by using the
socMemoryProfiler object functions.

For 'Profile' mode, call the collectMemoryStatistics function in a loop.

NumRuns = 100;
for n = 1:NumRuns
 collectMemoryStatistics(profilerObj);
end

JTAG design setup time is long relative to FPGA transaction times, and if you have a small number of
transactions in your design, they might have already completed by the time you query the monitor. In
this case, the bandwidth plot shows only one sample, and the throughput calculation is not accurate.
If this situation occurs, increase the total number of transactions the design executes.

For 'Trace' mode, call the collectMemoryStatistics function once. This function stops the IP
from writing transactions into the FIFO in the AXI interconnect monitor IP, although the transactions
continue on the interconnect. Set the size of the transaction FIFO, Trace capture depth, in the
configuration parameters of the model, under Hardware Implementation > Target hardware
resources > FPGA design (debug).

collectMemoryStatistics(profilerObj);

Visualize the performance data by using the plotMemoryStatistics function. In 'Profile'
mode, this function launches a performance plot tool, and you can configure the tool to plot
bandwidth, burst count, and average transaction latency. In 'Trace' mode, this function opens the
Logic Analyzer tool to view burst transaction event data.

plotMemoryStatistics(profilerObj);

Input Arguments
profiler — Memory profiler object
socMemoryProfiler object

Memory profiler object, specified as an socMemoryProfiler object that provides access to the AXI
memory interconnect IP running on the hardware board.

See Also
“Memory Performance Information from FPGA Execution”

Topics
“Analyze Memory Bandwidth Using Traffic Generators”

Introduced in R2019a

 plotMemoryStatistics

3-29

initialize
Initialize IP core corresponding to socIPCore object

Syntax
initialize(socIP)

Description
initialize(socIP) initializes the IP core corresponding to socIP, an socIPCore object.

Examples

Initialize Traffic Generator IP

Create an socIPCore object representing a traffic generator IP on an FPGA board. Then initialize it
using the initialize function.

% Create IPCore object for traffic generator IP
trafficGeneratorObj = socIPCore(AXIMasterObj, atg,'TrafficGenerator');
% Initialize traffic generator IP
initialize(trafficGeneratorObj);

Input Arguments
socIP — Connection to IP core running on FPGA board
socIPCore

Connection to IP core running on FPGA board, specified as an socIPCore object.

See Also
socIPCore

Introduced in R2019a

3 Functions

3-30

start
Start IP core execution on hardware board

Syntax
start(socIP)

Description
start(socIP) starts the execution of the IP core represented by the socIP object.

This function is only applicable when socIPCore is an object representing TrafficGenerator or
VDMATrigger.

Examples

Initialize and Start a Traffic Generator IP

Create an socIPCore object representing a traffic generator IP on an FPGA board. Then initialize
the traffic generator using the initialize function.

% Create IPCore object for traffic generator IP
trafficGeneratorObj = socIPCore(AXIMasterObj, atg,'TrafficGenerator');
% Initialize traffic generator IP
initialize(trafficGeneratorObj);

Start the traffic generator IP execution on your FPGA board.

start(trafficGeneratorObj);

Input Arguments
socIP — Connection to IP core running on FPGA board
socIPCore

Connection to IP core running on FPGA board, specified as an socIPCore object.

See Also
socIPCore

Introduced in R2019a

 start

3-31

readmemory
Read data from AXI4 memory-mapped slaves

Syntax
data = readmemory(mem,addr,size)
data = readmemory(mem,addr,size,Name,Value)

Description
data = readmemory(mem,addr,size) reads size locations of data, starting from the address
specified in addr, and incrementing the address for each word. By default, the output data type is
uint32. addr, must refer to an AXI slave memory location controlled by the AXI master IP on your
hardware board. The socAXIMaster object, mem, manages the connection between MATLAB and the
AXI master IP.

data = readmemory(mem,addr,size,Name,Value) reads size locations of data, starting from
the address specified in addr, with additional options specified by one or more Name,Value pair
arguments.

Examples

Access Memory on SoC Hardware Board from MATLAB

For this example, you must have a design running on a hardware board connected to the MATLAB
host machine.

Create a MATLAB AXI master object. The object connects with the hardware board and confirms that
the IP is present. You can create the object with a vendor name or an socHardwareBoard object.

mem = socAXIMaster('Xilinx');

Write and read one or more addresses with one command. By default, the functions auto-increment
the address for each word of data. For instance, write ten addresses, then read the data back from a
single location.

writememory(mem,140,[10:19])
rd_d = readmemory(mem,140,1)

rd_d =

 uint32

 10

Now, read the written data from ten locations.

rd_d = readmemory(mem,140,10)

rd_d =

3 Functions

3-32

 1×10 uint32 row vector

 10 11 12 13 14 15 16 17 18 19

Set the BurstType property to 'Fixed' to turn off the auto-increment and access the same address
multiple times. For instance, read the written data ten times from the same address.

rd_d = readmemory(mem,140,10,'BurstType','Fixed')

rd_d =

 1×10 uint32 row vector

 10 10 10 10 10 10 10 10 10 10

Write incrementing data ten times to the same address. The final value stored in address 140 is 29.

writememory(mem,140,[20:29],'BurstType','Fixed')
rd_d = readmemory(mem,140,10)

rd_d =

 1×10 uint32 row vector

 29 11 12 13 14 15 16 17 18 19

Alternatively, specify the address as a hexadecimal string. To cast the read data to a data type other
than uint32, use the OutputDataType property.

writememory(mem,'1c',[0:4:64])
rd_d = readmemory(mem,'1c',16,'OutputDataType',numerictype(0,6,4))

rd_d =

 Columns 1 through 10
 0 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 2.2500
 Columns 11 through 16
 2.5000 2.7500 3.0000 3.2500 3.5000 3.7500

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 6
 FractionLength: 4

When you are done accessing the board, release the JTAG connection.

release(mem)

Input Arguments
mem — JTAG connection to AXI master IP running on hardware board
socAXIMaster object

JTAG connection to AXI master IP running on your hardware board, specified as an socAXIMaster
object.

addr — Starting address for read operation
integer | hexadecimal character vector

 readmemory

3-33

Starting address for read operation, specified as an integer or a hexadecimal character vector. The
function casts the address to uint32 data type. The address must refer to an AXI slave memory
location controlled by the AXI master IP on your hardware board.
Example: 'a4'

size — Number of locations to read
integer

Number of memory locations to read, specified as an integer. By default, the function reads from a
contiguous address block, incrementing the address for each operation. To turn off the address
increment and read repeatedly from the same location, set the BurstType property to 'Fixed'.

When you specify a large operation size, such as reading a block of DDR memory, the object
automatically breaks the operation into multiple bursts, using the maximum supported burst size. The
maximum supported burst size is 256 words.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: readmemory(mem,140,10,'BurstType','Fixed')

BurstType — AXI4 burst type
'Increment' (default) | 'Fixed'

AXI4 burst type, specified as the comma-separated pair consisting of 'BurstType' and either
'Increment' or 'Fixed'. If this value is 'Increment', the AXI master reads a vector of data from
contiguous memory locations, starting with the specified address. If this value is 'Fixed', the AXI
master reads all data from the same address.

OutputDataType — Data type assigned to read data
'uint32' (default) | 'int8' | 'int16' | 'int32' | 'uint8' | 'uint16' | 'single' |
numerictype object

Data type assigned to the read data, specified as 'uint32', 'int8', 'int16', 'int32', 'uint8',
'uint16', 'single', or a numerictype object.

Output Arguments
data — Read data
scalar | vector

Read data, returned as scalar or vector depending on the value you specified for size. The function
casts the data to the data type specified by the OutputDataType property.

See Also
writememory

Introduced in R2019a

3 Functions

3-34

writememory
Write data to AXI4 memory-mapped slaves

Syntax
writememory(mem,addr,data)
writememory(mem,addr,data,Name,Value)

Description
writememory(mem,addr,data) writes all words specified in data, starting from the address
specified in addr, and then incrementing the address for each word. addr, must refer to an AXI slave
memory location controlled by the AXI master IP on your hardware board. The socAXIMaster
object, mem, manages the connection between MATLAB and the AXI master IP.

writememory(mem,addr,data,Name,Value) writes all words specified in data, starting from the
address specified in addr, with additional options specified by one or more Name,Value pair
arguments.

Examples

Access Memory on SoC Hardware Board from MATLAB

For this example, you must have a design running on a hardware board connected to the MATLAB
host machine.

Create a MATLAB AXI master object. The object connects with the hardware board and confirms that
the IP is present. You can create the object with a vendor name or an socHardwareBoard object.

mem = socAXIMaster('Xilinx');

Write and read one or more addresses with one command. By default, the functions auto-increment
the address for each word of data. For instance, write ten addresses, then read the data back from a
single location.

writememory(mem,140,[10:19])
rd_d = readmemory(mem,140,1)

rd_d =

 uint32

 10

Now, read the written data from ten locations.

rd_d = readmemory(mem,140,10)

rd_d =

 1×10 uint32 row vector

 writememory

3-35

 10 11 12 13 14 15 16 17 18 19

Set the BurstType property to 'Fixed' to turn off the auto-increment and access the same address
multiple times. For instance, read the written data ten times from the same address.

rd_d = readmemory(mem,140,10,'BurstType','Fixed')

rd_d =

 1×10 uint32 row vector

 10 10 10 10 10 10 10 10 10 10

Write incrementing data ten times to the same address. The final value stored in address 140 is 29.

writememory(mem,140,[20:29],'BurstType','Fixed')
rd_d = readmemory(mem,140,10)

rd_d =

 1×10 uint32 row vector

 29 11 12 13 14 15 16 17 18 19

Alternatively, specify the address as a hexadecimal string. To cast the read data to a data type other
than uint32, use the OutputDataType property.

writememory(mem,'1c',[0:4:64])
rd_d = readmemory(mem,'1c',16,'OutputDataType',numerictype(0,6,4))

rd_d =

 Columns 1 through 10
 0 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 2.2500
 Columns 11 through 16
 2.5000 2.7500 3.0000 3.2500 3.5000 3.7500

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 6
 FractionLength: 4

When you are done accessing the board, release the JTAG connection.

release(mem)

Input Arguments
mem — JTAG connection to AXI master IP running on hardware board
socAXIMaster object

JTAG connection to AXI master IP running on your hardware board, specified as an socAXIMaster
object.

addr — Starting address for write operation
integer | hexadecimal character vector

3 Functions

3-36

Starting address for read operation, specified as an integer or a hexadecimal character vector. The
function casts the address to uint32 data type. The address must refer to an AXI slave memory
location controlled by the AXI master IP on your hardware board.
Example: 'a4'

data — Data words to write
scalar | vector

Data words to write, specified as a scalar or a vector. By default, the function writes the data to a
contiguous address block, incrementing the address for each operation. To turn off the address
increment and write each data value to the same location, set the BurstType property to 'Fixed' .

Before sending the write request to the board, the function casts the input data to uint32 or int32
data type. The data type conversion follows these rules:

• If the input data type is double, then the data is cast to int32 data type.
• If the input data type is single, then the data is cast to uint32 data type.
• If the bit width of the input data type is less than 32 bits, then the data is sign-extended to 32 bits.
• If the bit width of the input data type is longer than 32 bits, then the data is cast to int32 or

uint32 data type, matching the signedness of the original data type.
• If the input data is a fixed-point data type, then the function writes the stored integer value of the

data.

When you specify a large operation size, such as writing a block of DDR memory, the function
automatically breaks the operation into multiple bursts, using the maximum supported burst size. The
maximum supported burst size is 256 words.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: writememory(mem,140,[20:29],'BurstType','Fixed')

BurstType — AXI4 burst type
'Increment' (default) | 'Fixed'

AXI4 burst type, specified as the comma-separated pair consisting of 'BurstType' and either
'Increment' or 'Fixed'. If this value is 'Increment', the AXI master writes a vector of data from
contiguous memory locations, starting with the specified address. If this value is 'Fixed', the AXI
master writers all data from the same address.

See Also
readmemory

Introduced in R2019a

 writememory

3-37

release
Release JTAG cable resource

Syntax
release(mem)

Description
release(mem) releases the JTAG cable resource, freeing the cable for use to reprogram the FPGA.
After initialization, the AXI master object, mem, holds the JTAG cable resource, and other programs
cannot access that JTAG cable. When you have an active AXI master object, FPGA programming over
JTAG fails. Call the release object function before reprogramming the FPGA.

Examples

Access Memory on SoC Hardware Board from MATLAB

For this example, you must have a design running on a hardware board connected to the MATLAB
host machine.

Create a MATLAB AXI master object. The object connects with the hardware board and confirms that
the IP is present. You can create the object with a vendor name or an socHardwareBoard object.

mem = socAXIMaster('Xilinx');

Write and read one or more addresses with one command. By default, the functions auto-increment
the address for each word of data. For instance, write ten addresses, then read the data back from a
single location.

writememory(mem,140,[10:19])
rd_d = readmemory(mem,140,1)

rd_d =

 uint32

 10

Now, read the written data from ten locations.

rd_d = readmemory(mem,140,10)

rd_d =

 1×10 uint32 row vector

 10 11 12 13 14 15 16 17 18 19

Set the BurstType property to 'Fixed' to turn off the auto-increment and access the same address
multiple times. For instance, read the written data ten times from the same address.

3 Functions

3-38

rd_d = readmemory(mem,140,10,'BurstType','Fixed')

rd_d =

 1×10 uint32 row vector

 10 10 10 10 10 10 10 10 10 10

Write incrementing data ten times to the same address. The final value stored in address 140 is 29.

writememory(mem,140,[20:29],'BurstType','Fixed')
rd_d = readmemory(mem,140,10)

rd_d =

 1×10 uint32 row vector

 29 11 12 13 14 15 16 17 18 19

Alternatively, specify the address as a hexadecimal string. To cast the read data to a data type other
than uint32, use the OutputDataType property.

writememory(mem,'1c',[0:4:64])
rd_d = readmemory(mem,'1c',16,'OutputDataType',numerictype(0,6,4))

rd_d =

 Columns 1 through 10
 0 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 2.2500
 Columns 11 through 16
 2.5000 2.7500 3.0000 3.2500 3.5000 3.7500

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 6
 FractionLength: 4

When you are done accessing the board, release the JTAG connection.

release(mem)

Input Arguments
mem — JTAG connection to AXI master IP running on hardware board
socAXIMaster object

JTAG connection to AXI master IP running on your hardware board, specified as an socAXIMaster
object.

See Also
readmemory | writememory

Introduced in R2019a

 release

3-39

socFunctionAnalyzer
Estimate number of operations in MATLAB function

Syntax
socFunctionAnalyzer(functionName)
socFunctionAnalyzer(functionName,Name,Value)
report = socFunctionAnalyzer(___)
[report,y1,...,yn] = socFunctionAnalyzer(___)

Description
socFunctionAnalyzer(functionName) generates a report with the estimated number of
operations in the MATLAB function specified by functionName.

The function generates the report as a Microsoft® Excel® spreadsheet and a MAT-file. The function
also provides a link to view the report in a separate dialog box.

The report includes information for each mathematical or logical operator in the function, with
individual lines for each operator and data type. For example, multiplication with data type double
and multiplication with data type uint32 are listed separately. The report lists each instance of the
operator as a separate line. The report includes these fields.

• Path – The path to the operator within the structural hierarchy of the top function
• Count – The number of times the operator is executed in the design
• Operator – The operator used
• DataType – The data type used for the output of the operator
• Link – A link to the location of the operator in the function

For more information, see “Using the Algorithm Analyzer Report”.

socFunctionAnalyzer(functionName,Name,Value) specifies options using one or more name-
value pair arguments. For example, 'IncludeOperator','+' specifies that the generated report
only includes '+' operator counts.

report = socFunctionAnalyzer(___) returns a structure of tables that contain report
information. Specify any of the input argument combinations from previous syntaxes.

[report,y1,...,yn] = socFunctionAnalyzer(___) returns the outputs y1,...,yn of the
specified function. Specify any of the input argument combinations from previous syntaxes.

Examples

Analyze Resources in Function

This example calculates the number of operators in the function soc_test_func.m.

3 Functions

3-40

Analyze Function

soc_test_func takes two input arguments of type uint32. Use the FunctionInputs argument to
create a report with 10 and 20 as inputs to the soc_test_func function. The report is generated in
a folder named report.

socFunctionAnalyzer('soc_test_func.m','FunctionInputs',{10,20},"Folder","report");

View Generated Report

After execution, the socFunctionAnalyzer function provides a link to the generated report. Click
the link titled Open report viewer. The report opens in a separate window:

The result shows that the ADD operator is used 50 times with data type double. The call to myloop
executes once with data type uint32, and the MUL operator is used 50 times with data type uint32.

Input Arguments
functionName — MATLAB function to analyze
character vector | string scalar

MATLAB function to analyze, specified as a character vector or string scalar that indicates the
function name or file name.
Example: 'soc_analyze_FFT_tb.m'
Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: socFunctionAnalyzer('mySocFunction.m','Folder','report_sym')

FunctionInputs — Inputs for function to be analyzed
cell array

 socFunctionAnalyzer

3-41

Inputs for the function to be analyzed, specified as the comma-separated pair consisting of
'FunctionInputs' and a cell array. The socFunctionAnalyzer function evaluates the function to
be analyzed, functionName, with these values as inputs. If you do not specify this name-value pair
argument, then no arguments are passed to functionName.

If functionName expects input arguments, then you must specify this name-value pair argument.
Otherwise, the socFunctionAnalyzer function errors.
Example: 'FunctionInputs',{10,fi(20)}

Folder — Folder location of generated report
current folder (default) | character vector | string scalar

Folder location of generated report, specified as the comma-separated pair consisting of 'Folder'
and a character vector or string scalar indicating the folder path. Specify the path to the location for
the generated output reports as a full path or relative path.
Example: 'Folder','C:/Work/mydir'

IncludeOperator — Operators to include in generated report
all available operators (default) | character vector | string scalar | cell array of strings | cell array of
character vectors

Operators to include in the generated report , specified as the comma-separated pair consisting of
'IncludeOperator' and a character vector or string scalar to specify one operator. Use cell array
of character vectors or string scalars to specify multiple operators. When you do not specify this
name-value pair argument, the socFunctionAnalyzer function includes all operators, except for
the operators specified by the ExcludeOperator name-value pair argument.
Example: 'IncludeOperator','+'
Example: 'IncludeOperator',{'+','IF','MUL'}

ExcludeOperator — Operators to exclude from generated report
character vector | string scalar | cell array of strings | cell array of character vectors

Operators to exclude from the generated report, specified as the comma-separated pair consisting of
'ExcludeOperator' and a character vector or string scalar to specify one operator. Use cell array
of character vectors or string scalars to specify multiple operators. When you do not specify this
name-value pair argument, the socFunctionAnalyzer function includes all operators in the report.
Example: 'ExcludeOperator','-'
Example: 'ExcludeOperator',{'-','CALL'}

IncludeFunction — Functions to include in generated report
all functions in function hierarchy (default) | character vector | string scalar | cell array of strings |
cell array of character vectors

Functions to include in generated report, specified as the comma-separated pair consisting of
'IncludeFunction' and a character vector or string scalar to specify one function or file name.
Use cell array of character vectors or string scalars to specify multiple functions or file names. If you
do not specify this name-value pair argument, the socFunctionAnalyzer function includes all
functions in the report, except for the functions specified by the 'ExcludeFunction' name-value
pair argument. Use the 'IncludeFunction' name-value pair when you have a test bench function,
and you only want to analyze one of the functions it calls.

3 Functions

3-42

Example: 'IncludeFunction','myFunc.m'
Example: 'IncludeFunction',{'myFunc.m','func2'}

ExcludeFunction — Functions to exclude from generated report
character vector | string scalar | cell array of strings | cell array of character vectors

Functions to include in generated report, specified as the comma-separated pair consisting of
'ExcludeFunction' and a character vector or string scalar to specify one function or file name.
Use cell array of character vectors or string scalars to specify multiple functions or file names. If you
do not specify this name-value pair argument, the socFunctionAnalyzer function includes all
functions in the report.
Example: 'ExcludeFunction','myFunc.m'
Example: 'ExcludeFunction',{'myFunc.m','func2'}

Verbose — Display verbose messages
false or 0 (default) | true or 1

Display verbose messages, specified as the comma-separated pair consisting of 'Verbose' and 0
(false) or 1 (true). When this value is 1 (true), the function displays detailed information during
the different stages of execution.
Example: 'Verbose',true

Output Arguments
report — Operator count raw data
structure

Function operator count, returned as a structure of five tables:

• OperatorDetailedReport – A fully detailed report per operator
• OperatorAggregatedReport – An aggregated operator view, with one line for each type of

operator
• OperatorHierarchicalReport – A hierarchical operator view
• PathAggregatedReport – An aggregated model view
• PathHierarchicalReport – A Hierarchical model view

Each table contains raw data from which the function generates an HTML view, and a link to view the
data in a report window. The generated Excel file has five sheets, containing the information from the
five tables. For more information about the generated report, see “Using the Algorithm Analyzer
Report”.

y1,...,yn — Analyzed function output (as separate arguments)
calculated by functionName

Analyzed function output, returned as an output the functionName input function.

See Also
socAlgorithmAnalyzerReport | socModelAnalyzer

 socFunctionAnalyzer

3-43

Topics
“Using the Algorithm Analyzer Report”

Introduced in R2020a

3 Functions

3-44

socModelAnalyzer
Estimate number of operations in Simulink model

Syntax
socModelAnalyzer(modelName)
socModelAnalyzer(modelName,Name,Value)
report = socModelAnalyzer(___)

Description
socModelAnalyzer(modelName) generates a report with the estimated number of operations in a
Simulink model specified by modelName.

The function generates the report as a Microsoft Excel spreadsheet and a MAT-file. The function also
provides a link to view the report in a separate dialog box.

The report includes information for each mathematical or logical operator in the function, with
individual lines for each operator and data type. For example, multiplication with data type double
and multiplication with data type uint32 are listed separately. The report lists each instance of the
operator as a separate line. The report includes these fields.

• Path – The path to the operator within the structural hierarchy of the top function
• Count – The number of times the operator is executed in the design
• Operator – The operator used
• DataType – The data type used for the output of the operator
• Link – A link to the location of the operator in the function

For more information, see “Using the Algorithm Analyzer Report”.

socModelAnalyzer(modelName,Name,Value) specifies options using one or more name-value
pair arguments. For example, 'IncludeOperator','+' specifies that the generated report only
includes '+' operator counts.

report = socModelAnalyzer(___) returns a structure of tables that contain report information.
Specify any of the input argument combinations from previous syntaxes.

Examples

Analyze Resources in a Model

Calculate the number of operators in the model testmdl.slx.

Analyze the Model

Count operators in testmdl, and generate a report in a folder named report.

socModelAnalyzer('testmdl.slx',"Folder","report");

 socModelAnalyzer

3-45

View the Generated Report

After execution, the socModelAnalyzer function provides a link to the generated report. Click the
link titled Open report viewer. The report opens in a separate window:

The result shows that the ADD operator is used 11 times with data type matrix 10 uint32, and 22
times with data type uint32. The GT (greater than) operator was used 22 times total with data type
logical: 11 times from SubAdd model, and 11 times from SubMult model. The MUL operator is
used 11 times with data type uint32, and 11 times with matrix 10 uint32.

Input Arguments
modelName — Simulink model to analyze
character vector | string

Simulink model to analyze, specified as a character vector or string scalar.
Example: 'soc_analyze_FFT_top.slx'
Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example: socModelAnalyzer('mySocModel.slx','Folder','report_sym')

Folder — Folder location of generated report
current folder (default) | character vector | string scalar

Folder location of generated report, specified as the comma-separated pair consisting of 'Folder'
and a character vector or string scalar indicating the folder path. Specify the path to the location for
the generated output reports as a full path or relative path.
Example: 'Folder','C:/Work/mydir'

3 Functions

3-46

IncludeOperator — Operators to include in generated report
all available operators (default) | character vector | string scalar | cell array of strings | cell array of
character vectors

Operators to include in the generated report , specified as the comma-separated pair consisting of
'IncludeOperator' and a character vector or string scalar to specify one operator. Use cell array
of character vectors or string scalars to specify multiple operators. When you do not specify this
name-value pair argument, the socModelAnalyzer function includes all operators, except for the
operators specified by the ExcludeOperator name-value pair argument.
Example: 'IncludeOperator','+'
Example: 'IncludeOperator',{'+','IF','MUL'}

ExcludeOperator — Operators to exclude from generated report
character vector | string scalar | cell array of strings | cell array of character vectors

Operators to exclude from the generated report, specified as the comma-separated pair consisting of
'ExcludeOperator' and a character vector or string scalar to specify one operator. Use cell array
of character vectors or string scalars to specify multiple operators. When you do not specify this
name-value pair argument, the socModelAnalyzer function includes all operators in the report.
Example: 'ExcludeOperator','-'
Example: 'ExcludeOperator',{'-','CALL'}

IncludeBlockPath — Models to include in generated report
all models or blocks in top model hierarchy (default) | character vector | string | cell array of strings |
cell array of character vectors

Models or blocks to include in generated report, specified as the comma-separated pair consisting of
'IncludeBlockPath' and a character vector or string scalar to specify one block or model. Use cell
array of character vectors or string scalars to specify multiple blocks or models. If you do not specify
this name-value pair argument, the socModelAnalyzer function includes all models and blocks in
the report, except for the blocks specified by the 'ExcludeBlockPath' name-value pair argument.
Use the 'IncludeBlockPath' name-value pair when you have a test bench model, and you only
want to analyze one of the models it includes.
Example: 'IncludeBlockPath','myModel.slx'
Example: 'IncludeBlockPath',{'myModel.slx','myIfft'}

ExcludeBlockPath — Models to exclude from generated report
character vector | string | cell array of strings | cell array of character vectors

Models or blocks to include in generated report, specified as the comma-separated pair consisting of
'ExcludeBlockPath' and a character vector or string scalar to specify one block or model. Use cell
array of character vectors or string scalars to specify multiple blocks or models. If you do not specify
this name-value pair argument, the socModelAnalyzer function includes all models and blocks in
the report.
Example: 'ExcludeBlockPath','myOtherModel.slx'
Example: 'ExcludeBlockPath',{'myOtherModel.slx','myIfft'}

Verbose — Display verbose messages
false or 0 (default) | true or 1

 socModelAnalyzer

3-47

Display verbose messages, specified as the comma-separated pair consisting of 'Verbose' and 0
(false) or 1 (true). When this value is 1 (true), the function displays detailed information during
the different stages of execution.
Example: 'Verbose',true

Output Arguments
report — Operator count raw data
structure

Model operator count, returned as a structure of five tables:

• OperatorDetailedReport – A fully detailed report per operator
• OperatorAggregatedReport – An aggregated operator view, with one line for each type of

operator
• OperatorHierarchicalReport – A hierarchical operator view
• PathAggregatedReport – An aggregated model view
• PathHierarchicalReport – A Hierarchical model view

Each table contains raw data from which the function generates an HTML view, and a link to view the
data in a report window. The generated Excel file has five sheets, containing the information from the
five tables. For more information about the generated report, see “Using the Algorithm Analyzer
Report”.

Limitations
• This function does not support AUTOSAR Blockset blocks or models.
• This function does not support Simulink send and receive messages.

See Also
socAlgorithmAnalyzerReport | socFunctionAnalyzer

Topics
“Using the Algorithm Analyzer Report”

Introduced in R2020a

3 Functions

3-48

socExportReferenceDesign
Export custom reference design for HDL Workflow Advisor

Syntax
socExportReferenceDesign(topModelName)
socExportReferenceDesign(topModelName,Name,Value)

Description
socExportReferenceDesign(topModelName) exports a custom reference design from an SoC
Blockset model with name topModelName. To create an SoC Blockset model, you must perform one
of these actions.

• Create a model using an SoC Blockset template. For more information, see “Use Template to
Create SoC Model”.

• Open Simulink. On the Apps tab click System on Chip (SoC).
• In an existing Simulink model, click Model Settings in the Modeling tab. In the left pane, select

Hardware Implementation. Then, set Hardware board to a supported SoC board. For a list of
supported SoC boards, see “Supported Third-Party Tools and Hardware”.

Use this exported design with HDL Workflow Advisor (requires HDL Coder™ license). Use this
function to eliminate the manual steps for creating a custom reference design, as described in
“Custom Reference Design” (HDL Coder). Use the exported reference design in the IP core
generation workflow with the HDL Workflow advisor. For more information, see “Hardware Software
Co-Design Basics” (HDL Coder).

For more information about the HDL Workflow Advisor app, see “Getting Started with the HDL
Workflow Advisor” (HDL Coder).

To use this function, you must first install Xilinx Vivado® or Intel Quartus®.

socExportReferenceDesign(topModelName,Name,Value) specifies options using one or more
name-value pair arguments.

Examples

Export Custom Reference Design from SoC Model

Export a custom reference design from the soc_image_rotaion.slx model.

socExportReferenceDesign('soc_image_rotation')

Export Reference Design Using Specific Arguments

Export a custom reference design from the soc_hwsw_stream_top model.

 socExportReferenceDesign

3-49

• Exclude the DUT named "FPGA Algorithm Wrapper" from the reference design.
• Place the generated output in folder C:/Work.
• Generate a board definition file with board name "My ZC706 Board". This name appears in the

Target platform menu in the HDL Workflow Advisor app.
• Generate reference design definition file with the design name My ZC706 Design.
socExportReferenceDesign('soc_hwsw_stream_top',...
 'DUTName','FPGA Algorithm Wrapper',...
 'Folder','C:/Work',...
 'TargetPlatform','My ZC706 Board',...
 'ReferenceDesign','My ZC706 Design')

Input Arguments
topModelName — Name of top Simulink model
character vector | string scalar

Name of the top Simulink model, specified as a character vector or string scalar. The reference
design is exported from the topModelName model. This model must be an SoC Blockset model.
Example: 'soc_hw_sw_stream_top' specifies the model with name 'soc_hw_sw_stream_top'.
Data Types: char | string

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.
Example:
socExportReferenceDesign('soc_image_rotation','Folder','refDesignFolder')
exports a reference design from the model soc_image_rotation, and places the generated files in
a folder named refDesignFolder.

DUTName — Name of DUT subsystem to exclude from reference design
inferred (default) | character vector | string scalar

Name of DUT subsystem to exclude from reference design, specified as a character vector or string
scalar. When there is one DUT in the model, the function infers the DUTName and sets it as the name
of the DUT in the model. You must specify this name-value pair argument when the FPGA model has
more than one DUT.
Example: 'soc_image_rotation_fpga/ImageRotation'
Data Types: char | string

Folder — Folder location for exported reference design files
topModelName_refdesign (default) | character vector | string scalar

Folder location for the exported reference design files, specified as a character vector or string scalar.
When not specified, the files are placed in a folder named topModelName_refdesign, where
topModelName is the name of the model.
Example: 'C:/Work/refDesign'
Data Types: char | string

3 Functions

3-50

TargetPlatform — Name of target platform
same as SoC model (default) | character vector | string scalar

Name of the target platform, specified as the comma-separated pair consisting of
'TargetPlatform' and a character vector or string scalar. When you do not specify this value, the
name of the target platform matches the Hardware Board parameter value in the SoC model
configuration parameters. In the HDL Workflow Advisor tool, this target platform name appears as
TargetPlatform (generated by SoC Blockset), where TargetPlatform is the value for this
name-value pair argument.
Example: 'Xilinx Zynq ZC706 evaluation kit'
Data Types: char | string

ReferenceDesign — Name of generated reference design
topModelName model (default) | character vector | string scalar

Name of the generated reference design, specified as the comma-separated pair consisting of
'ReferenceDesign' and a character vector or string scalar. When you do not specify this value, the
name of the generated reference design is topModelName model, where topModelName is
specified by the input topModelName.
Example: 'My ZC706 Design'
Data Types: char | string

See Also
SoC Builder | hdladvisor

Topics
“Custom Reference Design” (HDL Coder)
“Generate SoC Design”

Introduced in R2020a

 socExportReferenceDesign

3-51

socAlgorithmAnalyzerReport
Open algorithm analysis report

Syntax
socAlgorithmAnalyzerReport(reportfile)

Description
socAlgorithmAnalyzerReport(reportfile) opens the specified report generated by the
socFunctionAlalyzer or socModelAlalyzer function. The report opens in a separate window
titled Algorithm Analyzer Report.

Examples

Open Algorithm Analysis Report

Use the socFunctionAnalyzer function to generate a report. Then, open the generated report:

socFunctionAnalyzer('soc_test_func.m','FunctionInputs',{10,20},'Folder','report');
socAlgorithmAnalyzerReport('report/soc_test_func.mat');

Input Arguments
reportfile — Path to report file
character vector | string scalar

Path to report file, specified as a character vector or string scalar that indicates the name of a MAT-
file, generated by the socFunctionAnalyzer or socModelAnalyzer function.
Example: 'report/soc_test_func.mat'
Data Types: char | string

See Also
socFunctionAnalyzer | socModelAnalyzer

Topics
“Using the Algorithm Analyzer Report”

Introduced in R2020a

3 Functions

3-52

Objects

4

soc.iosource
Input source on SoC hardware board

Description
Create an soc.iosource object to connect to an input source on an SoC hardware board. Pass the
soc.iosource object as an argument to the addSource function of the soc.recorder object.

The sources available on the design running on the SoC hardware board correspond to the blocks you
included in your Simulink model. When you run SoC Builder, it connects your FPGA logic with the
matching interface on the board.

Source Block Action
'TCP Receive' TCP Read Read UDP (User Datagram

Protocol) data from the Linux
socket buffer.

'UDP Receive' UDP Read Read TCP/IP data from Linux
socket buffer.

'AXI Register Read' Register Read Read registers from an IP core
using the AXI interface.

'AXI Stream Read' Stream Read Read AXI-4 Stream data using
IIO.

Creation

Syntax
availableSources = soc.iosource(hw)
src = soc.iosource(hw,inputSourceName)

Description

availableSources = soc.iosource(hw) returns a list of input sources available for data
logging on the SoC hardware board connected through hw. hw is an socHardwareBoard object.

src = soc.iosource(hw,inputSourceName) creates a source object corresponding to
inputSourceName on the SoC hardware board connected through hw.

Input Arguments

hw — Hardware object
socHardwareBoard object

Hardware object, specified as a socHardwareBoard object that represents the connection to the
SoC hardware board.

4 Objects

4-2

inputSourceName — Name of available input source on SoC hardware board
character vector

Name of an available input source on the SoC hardware board, specified as a character vector. To get
the list of input sources available for data logging on the specified SoC hardware board, call the
soc.iosource function without arguments.
Example: 'UDP Receive'
Data Types: char

Output Arguments

availableSources — List of input data sources available for data logging
cell array

List of input data sources available for data logging on the specified SoC hardware board, returned as
a cell array. Each cell contains a character vector with the name of an available input data source for
data logging on the specified SoC hardware board. Use one of these names as the inputSourceName
argument when you create a source object.

src — Source object for specified input source
soc.iosource object

Source object for specified input source, returned as an soc.iosource.

Properties
DeviceName — Name of IP core device
character vector

Name of IP core device, specified as a character vector.
Example: 'mwipcore0:s2mm0'

Dependencies

To enable this property, create a AXI register or AXI stream source object.
Data Types: char

RegisterOffset — Offset from base address of IP core to register
positive scalar

Offset from the base address of the IP core to the register, specified as a positive scalar.

Dependencies

To enable this property, create a AXI register source object.
Data Types: uint32

LocalPort — IP port on hardware board where UDP or TCP data is received
25000 (UDP) (default) | -1 (TCP) | integer from 1 to 65,535

IP port on hardware board where UDP or TCP data is received specified as a scalar from 1 to 65,535.
The object reads UDP or TCP data received on this port of the specified SoC hardware board.

 soc.iosource

4-3

For a TCP object with the NetworkRole property to 'Client', set LocalPort to -1 to assign any
random available port on the hardware board as the local port.
Dependencies

To enable this property, create a TCP or UDP source object.
Data Types: uint16

NetworkRole — Network role
'Client' (default) | character vector

Network role, specified as a character vector.
Example: 'Client'
Dependencies

To enable this property, create a TCP source object.
Data Types: enumerated string

RemoteAddress — IP address of remote server from which data is received
'127.0.0.1' (default) | dotted-quad expression

IP address of the remote server from which data is received, specified as a dotted-quad expression.
Dependencies

To enable this property, create a TCP source object.
Data Types: char

RemotePort — IP port number of remote server from which data is received
25000 (default) | integer from 1 to 65,535

IP port number of the remote server from which data is received, specified as an integer from 1 to
65,535.
Dependencies

To enable this property, create a TCP source object.
Data Types: double

DataLength — Length of data packet or register data vector
1 (default) | positive scalar

Maximum length of UDP or TCP data packet, or word length of AXI register data vector, specified as a
positive scalar.
Data Types: double

SamplesPerFrame — Size of data vector read from IP core
nonnegative scalar

Size of the data vector read from the IP core, specified as a nonnegative scalar.
Dependencies

To enable this property, create a AXI stream source object.

4 Objects

4-4

Data Types: double

DataType — Data type of received data
'uint8' (default) | 'uint16' | 'uint32' | 'int8' | 'int16' | 'int32' | 'double' | 'single'

Data type of received data, specified as 'uint8', 'uint16', 'uint32', 'int8', 'int16',
'int32', 'double' or 'single'.
Data Types: char

ReceiveBufferSize — Internal buffer size of object
65535 (default) | array

Internal buffer size of object, specified as an array.

Dependencies

To enable this property, create a TCP or UDP source object.
Data Types: double

Sample Time — Sample time
1 (default) | nonnegative scalar

Sample time, in seconds, at which you want to receive data, specified as an nonnegative scalar.
Data Types: double

Examples

Record Data From SoC Hardware Board

Create a connection from MATLAB to the specified SoC hardware board using the IP address,
username, and password of the board.

hw = socHardwareBoard('Xilinx Zynq ZC706 evaluation kit','hostname','192.168.1.18','username','root','password','root');

Create a data recording session on the SoC hardware board by using the hw object. The resulting
soc.recorder object represents the data recording session on the SoC hardware board.

dr = soc.recorder(hw)

dr =

 DataRecorder with properties:

 HardwareName: 'Xilinx Zynq ZC706 evaluation kit'
 Sources: {}
 Recording: false

List the input sources added to the data recording session.

dr.Sources(hw)

 soc.iosource

4-5

ans =

 1×0 empty cell array

By default, soc.recorder objects have no added input sources. To add an input source to the data
recording session, first create an input source object by using the soc.iosource function. For this
example, create an User Datagram Protocol (UDP) source object.

udpSrc = soc.iosource(hw,'UDP Receive')

udpSrc =

 soc.iosource.UDPRead with properties:

 Main
 LocalPort: 25000
 DataLength: 1
 DataType: 'uint8'
 ReceiveBufferSize: -1
 BlockingTime: 0
 OutputVarSizeSignal: false
 SampleTime: 0.1000
 HideEventLines: true

 Show all properties

Add this UDP source object to the data recording session by using the addSource object function.

addSource(dr,udpSrc,'UDPDataReceived-Port25000')

Verify the result by inspecting the Sources property of the soc.recorder object.

dr.Sources

ans =

 1×1 cell array

 {'UDPDataOnPort25000'}

Call the setup function to initialize all hardware peripheral input sources added to the data recording
session, and start the data recording process.

setup(dr)

Record data for 60 seconds on the SoC hardware board.

record(dr, 60);

Check the status of the data recording session by using the isRecording object function. The
recording status when data recording is in progress is 1.

recordingStatus = isRecording(dr)

recordingStatus =

 logical

 1

4 Objects

4-6

The recording status when data recording is complete is 0.

isRecording(dr)

recordingStatus =

 logical

 0

Save recorded data to a TGZ-compressed file.

save(dr,'UDPDataReceived','UDP Data Testing',{'Recorded On Zynq Board'})

This function saves the recorded data as the file UDPDataReceived.tgz in your working folder of
the host PC. You can read this file by using an socFileReader object in MATLAB or an IO Data
Source block in your Simulink model.

Remove the added source from the data recording session by using the removeSource object
function.

removeSource(dr,'UDPDataReceived-Port25000')

Verify the result by inspecting the Sources property of the soc.recorder object.

ans =

 1×0 empty cell array

See Also
soc.recorder | socHardwareBoard

Introduced in R2019a

 soc.iosource

4-7

socHardwareBoard
Connection to SoC hardware board

Description
The socHardwareBoard object represents a connection to the specified SoC hardware board from
MATLAB. Use this object to create soc.recorder and socAXIMaster objects that record input data
and access memory on the specified SoC hardware board.

Creation

Syntax
hwList = socHardwareBoard()
hw = socHardwareBoard(boardName)
hw = socHardwareBoard(boardName,Name,Value)

Description

hwList = socHardwareBoard() returns a list of supported SoC hardware boards.

hw = socHardwareBoard(boardName) creates a connection to the specified SoC hardware board.
This connection reuses the IP address, username, and password from the most recent connection to
that specified SoC hardware board. When you connect MATLAB to an SoC hardware board for the
first time, enter the board name, IP address, username, and password of the SoC hardware board as
name-value pair arguments.

To see the complete list of supported SoC hardware boards, call the socHardwareBoard function
without any arguments.

hw = socHardwareBoard(boardName,Name,Value) creates a connection to the specified SoC
hardware by using the IP address, user name, and password that you specify.

Input Arguments

boardName — Name of supported SoC hardware board
character vector | string scalar

Name of supported SoC hardware board, specified as a character vector or string scalar. Specify the
name of hardware board to which you want to establish a connection from MATLAB. To get the list of
supported hardware boards, call socHardwareBoard function without any arguments.
Example: 'Xilinx Zynq ZC706 evaluation kit'

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments. Name is the argument name and
Value is the corresponding value. Name must appear inside quotes. You can specify several name and
value pair arguments in any order as Name1,Value1,...,NameN,ValueN.

4 Objects

4-8

Example: 'username','root'

hostname — IP address of SoC hardware board
character vector | string scalar

IP address of the SoC hardware board connected to the network, specified as the comma-separated
pair consisting of 'hostname' and a character vector or string scalar.
Example: '192.168.1.18'
Data Types: char | string

username — Root username used to log into SoC hardware board
character vector | string scalar

Root username used to log in into SoC hardware board connected to the network, specified as the
comma-separated pair consisting of 'username' and a character vector or string scalar.
Example: 'root'
Data Types: char | string

password — Root password used to log into SoC hardware board
character vector | string scalar

Root password used to log in into SoC hardware board connected to the network, specified as the
comma-separated pair consisting of 'password' and a character vector or string scalar.
Example: 'password'
Data Types: char | string

Output Arguments

hwList — List of supported SoC hardware boards
string array

List of SoC hardware boards that are supported for data logging returned as a string array.

hw — Connection to specific SoC hardware board
socHardwareBoard object

Connection to specific SoC hardware board, returned as a socHardwareBoard object. You can use
this connection for data logging of input sources with the soc.recorder object, or you can access
memory on the board using an socAXIMaster object.

Properties
BoardName — Name of supported SoC hardware board
character array | string scalar

This property cannot be changed after you create the socHardwareBoard object.

Name of supported SoC hardware board, specified as a character array or string scalar.
Example: 'Xilinx Zynq ZC706 evaluation kit'
Data Types: char | string

 socHardwareBoard

4-9

DeviceAddress — IP address of SoC hardware board
character array | string scalar

This property cannot be changed after you create the socHardwareBoard object.

IP address of SoC hardware board, specified as a character array or string scalar.
Example: '192.168.1.11'
Data Types: char | string

Port — IP port number of SoC hardware board
integer from 1 to 65,535

This property cannot be changed.

IP port number of SoC hardware board.
Example: 18735
Data Types: double

Examples

Record Data From SoC Hardware Board

Create a connection from MATLAB to the specified SoC hardware board using the IP address,
username, and password of the board.

hw = socHardwareBoard('Xilinx Zynq ZC706 evaluation kit','hostname','192.168.1.18','username','root','password','root');

Create a data recording session on the SoC hardware board by using the hw object. The resulting
soc.recorder object represents the data recording session on the SoC hardware board.

dr = soc.recorder(hw)

dr =

 DataRecorder with properties:

 HardwareName: 'Xilinx Zynq ZC706 evaluation kit'
 Sources: {}
 Recording: false

List the input sources added to the data recording session.

dr.Sources(hw)

ans =

 1×0 empty cell array

By default, soc.recorder objects have no added input sources. To add an input source to the data
recording session, first create an input source object by using the soc.iosource function. For this
example, create an User Datagram Protocol (UDP) source object.

udpSrc = soc.iosource(hw,'UDP Receive')

4 Objects

4-10

udpSrc =

 soc.iosource.UDPRead with properties:

 Main
 LocalPort: 25000
 DataLength: 1
 DataType: 'uint8'
 ReceiveBufferSize: -1
 BlockingTime: 0
 OutputVarSizeSignal: false
 SampleTime: 0.1000
 HideEventLines: true

 Show all properties

Add this UDP source object to the data recording session by using the addSource object function.

addSource(dr,udpSrc,'UDPDataReceived-Port25000')

Verify the result by inspecting the Sources property of the soc.recorder object.

dr.Sources

ans =

 1×1 cell array

 {'UDPDataOnPort25000'}

Call the setup function to initialize all hardware peripheral input sources added to the data recording
session, and start the data recording process.

setup(dr)

Record data for 60 seconds on the SoC hardware board.

record(dr, 60);

Check the status of the data recording session by using the isRecording object function. The
recording status when data recording is in progress is 1.

recordingStatus = isRecording(dr)

recordingStatus =

 logical

 1

The recording status when data recording is complete is 0.

isRecording(dr)

recordingStatus =

 logical

 0

 socHardwareBoard

4-11

Save recorded data to a TGZ-compressed file.

save(dr,'UDPDataReceived','UDP Data Testing',{'Recorded On Zynq Board'})

This function saves the recorded data as the file UDPDataReceived.tgz in your working folder of
the host PC. You can read this file by using an socFileReader object in MATLAB or an IO Data
Source block in your Simulink model.

Remove the added source from the data recording session by using the removeSource object
function.

removeSource(dr,'UDPDataReceived-Port25000')

Verify the result by inspecting the Sources property of the soc.recorder object.

ans =

 1×0 empty cell array

Initialize Memory on SoC Hardware Board from MATLAB

For an example of how to configure and use the AXI master IP in your design, see “Random Access of
External Memory”. Specifically, review the soc_image_rotation_axi_master.m script that
initializes the memory on the device, starts the FPGA logic, and reads back the modified data. This
example shows only the memory initialization step.

Load a .mat file that contains structures derived from the board configuration parameters. This file
was generated by SoC Builder. These structures also describe the IP cores and memory
configuration of the design on the board. Set up a JTAG AXI master connection by creating a
socHardwareBoard and passing it to the socAXIMaster object. The socAXIMaster object
connects with the hardware board and confirms that the IP is present.

load('soc_image_rotation_zc706_aximaster.mat');
hwObj = socHardwareBoard('Xilinx Zynq ZC706 evaluation kit','Connect',false);
AXIMasterObj = socAXIMaster(hwObj);

Initialize the memory contents on the device by loading the figure data and writing it to Region1.
The FPGA logic is designed to read this data, rotate it, and write it into Region2. Clear the contents
of Region2.

load('soc_image_rotation_inputdata.mat');
inputFigure = smallImage;
[x, y] = size(inputFigure);
inputImage = uint32(reshape(inputFigure',1,x*y));
writememory(AXIMasterObj,memRegions.AXI4MasterMemRegion1,inputImage);
writememory(AXIMasterObj,memRegions.AXI4MasterMemRegion2,uint32(zeros(1,x*y)));

See Also
soc.iosource | soc.recorder | socAXIMaster

Introduced in R2019a

4 Objects

4-12

DataRecorder
Data recording session for specified SoC hardware board

Description
A DataRecorder object can configure and log data from input sources on an SoC hardware board
connected to MATLAB. You can save the recorded data to a file for future use to playback in MATLAB
and Simulink models.

Creation

Syntax
dr = soc.recorder(hw)

Description

dr = soc.recorder(hw) creates a data recording session, dr, on the SoC hardware board
connection represented by hw. hw is an socHardwareBoard object.

Input Arguments

hw — Hardware object
socHardwareBoard object

Hardware object, specified as a socHardwareBoard object that represents the connection to the
SoC hardware board.

Properties
HardwareName — Name of supported SoC hardware board
character vector

Name of supported SoC hardware board, specified as a character vector.
Data Types: char

Sources — List of hardware-peripheral input sources
cell array

List of hardware-peripheral input sources added to data recording session, specified a character
vector. To add input sources to a soc.recorder object, call the addSource object function.
Data Types: cell

Recording — Status of data recording session
false (0) | true (1)

This property is read-only.

 DataRecorder

4-13

Status of data recording session, specified as a logic value of false (0) or true (1). To get the status
of the data recording session, call the isRecording object function.
Data Types: logical

Object Functions
addSource Add a input source to a data recording session
removeSource Remove input source from data recording session
setup Set up hardware for data recording
record Record data from hardware using data recorder object
isRecording Get data recording status
save Save recorded data from SoC hardware board to file on host PC

Examples

Record Data From SoC Hardware Board

Create a connection from MATLAB to the specified SoC hardware board using the IP address,
username, and password of the board.

hw = socHardwareBoard('Xilinx Zynq ZC706 evaluation kit','hostname','192.168.1.18','username','root','password','root');

Create a data recording session on the SoC hardware board by using the hw object. The resulting
soc.recorder object represents the data recording session on the SoC hardware board.

dr = soc.recorder(hw)

dr =

 DataRecorder with properties:

 HardwareName: 'Xilinx Zynq ZC706 evaluation kit'
 Sources: {}
 Recording: false

List the input sources added to the data recording session.

dr.Sources(hw)

ans =

 1×0 empty cell array

By default, soc.recorder objects have no added input sources. To add an input source to the data
recording session, first create an input source object by using the soc.iosource function. For this
example, create an User Datagram Protocol (UDP) source object.

udpSrc = soc.iosource(hw,'UDP Receive')

udpSrc =

 soc.iosource.UDPRead with properties:

 Main

4 Objects

4-14

 LocalPort: 25000
 DataLength: 1
 DataType: 'uint8'
 ReceiveBufferSize: -1
 BlockingTime: 0
 OutputVarSizeSignal: false
 SampleTime: 0.1000
 HideEventLines: true

 Show all properties

Add this UDP source object to the data recording session by using the addSource object function.

addSource(dr,udpSrc,'UDPDataReceived-Port25000')

Verify the result by inspecting the Sources property of the soc.recorder object.

dr.Sources

ans =

 1×1 cell array

 {'UDPDataOnPort25000'}

Call the setup function to initialize all hardware peripheral input sources added to the data recording
session, and start the data recording process.

setup(dr)

Record data for 60 seconds on the SoC hardware board.

record(dr, 60);

Check the status of the data recording session by using the isRecording object function. The
recording status when data recording is in progress is 1.

recordingStatus = isRecording(dr)

recordingStatus =

 logical

 1

The recording status when data recording is complete is 0.

isRecording(dr)

recordingStatus =

 logical

 0

Save recorded data to a TGZ-compressed file.

save(dr,'UDPDataReceived','UDP Data Testing',{'Recorded On Zynq Board'})

 DataRecorder

4-15

This function saves the recorded data as the file UDPDataReceived.tgz in your working folder of
the host PC. You can read this file by using an socFileReader object in MATLAB or an IO Data
Source block in your Simulink model.

Remove the added source from the data recording session by using the removeSource object
function.

removeSource(dr,'UDPDataReceived-Port25000')

Verify the result by inspecting the Sources property of the soc.recorder object.

ans =

 1×0 empty cell array

See Also
soc.iosource | socFileReader | socHardwareBoard

Introduced in R2019a

4 Objects

4-16

socFileReader
File reader

Description
The socFileReader object is a file reader that reads data from a specified TGZ-compressed file and
stores the data sets in the object. The data set contains information about the source objects that
represent recorded data sources from the specified TGZ-compressed file. The TGZ file format is
created by a previous recording session on an SoC hardware board.

Creation

Syntax
fr = socFileReader(filename)

Description

fr = socFileReader(filename) creates an object, fr, from the specified file. The object is a file
reader that reads data from a specified TGZ-compressed file and stores the data sets in the object.
The filename must be a file saved using the save function of an soc.recorder object.

Input Arguments

filename — File from previous data recording session
character vector

File from a previous data recording session on SoC hardware board, specified as a character vector
with a tgz extension.
Example: 'UDPDataReceived.tgz'

Properties
Description — User metadata describing data set
character vector

User meta data describing the data set, specified as a character vector. This value is added to the file
when you call the save object function.
Data Types: char

HardwareBoard — Name of SoC hardware board
character vector

Name of the SoC hardware board used for data collection in the soc.recorder object, specified as a
character vector.
Data Types: char

 socFileReader

4-17

Tags — User tags
cell array

User tags, specified as a cell array. This value is added to the file when you call the save object
function.
Data Types: cell

Filename — Name of recorded data file
character vector

Name of recorded data file, specified as a character vector. This value represents the file name of a
file saved using the save object function.
Data Types: char

Sources — List of sources in data set
cell array

List of sources in data set file, returned as a cell array.
Data Types: cell

Date — Date of data set creation
character vector

Date of data set creation, returned as a character vector.
Data Types: char | string

Object Functions
getData Get data from file reader

Examples

Create File Reader Object

Create a file reader to read data from the specified TGZ-compressed file.

fr = socFileReader('UDPDataReceived.tgz')

fr =

 socFileReader with properties:

 Description: ''
 HardwareBoard: 'Xilinx Zynq ZC706 evaluation kit'
 Tags: {}
 Filename: 'H:\UDPDataReceived.tgz'
 Sources: {'UDPDataOnPort25000'}
 Date: 28-Dec-2018 15:17:08

Get the data of a specified source from the file using the getData function.

4 Objects

4-18

rd = getData(fr,'UDPDataReceived-Port25000');

See Also
save | soc.recorder

Introduced in R2019a

 socFileReader

4-19

socIPCore
Create object to represent IP core running on FPGA board

Description
The socIPCore object represents an active IP core on an FPGA board and provides read and write
access to the IP.

Creation

Syntax
myCoreObj = socIPCore(axiMaster,IPCoreInfo,IPCoreName)
myCoreObj = socIPCore(axiMaster,IPCoreInfo,IPCoreName,Name,Value)

Description

myCoreObj = socIPCore(axiMaster,IPCoreInfo,IPCoreName) creates an socIPCore object
that connects to an IP core running on an FPGA board. The object uses an socAXIMaster object to
access memory locations in the IP core. IPCoreInfo is a structure generated when you run the SoC
Builder tool and includes the board and IP core configuration parameters from your model.

You can create socIPCore objects representing any of these IPs:

• Traffic generator
• Performance monitor
• Direct memory access (DMA)
• Video DMA (VDMA)
• Video timing controller (VTC)
• VDMA trigger
• Frame buffer
• High definition multimedia interface (HDMI)

myCoreObj = socIPCore(axiMaster,IPCoreInfo,IPCoreName,Name,Value) sets properties
using one or more name-value pairs. For example,
myIPobj=socIPCore(axiMaster, perf_mon,'PerformanceMonitor','Mode','Profile');

creates an socIPCore object that connects to an IP core on the specified board and sets the
performance monitor mode to profile mode.

Input Arguments

axiMaster — Name of socAXIMaster object used for memory-mapped access
socAXIMaster object

4 Objects

4-20

Name of socAXIMaster object used for memory-mapped access, specified as an socAXIMaster
object.

Create an socAXIMaster object using the socAXIMaster function, and use the created object as an
input to socIPCore.
Example: mySocAXIObj = socAXIMaster('Xilinx'); myIPObj =
socIPCore(mySocAXIObj,IPCoreInfo,'DMA')

IPCoreInfo — IP core information
structure

IP core information, specified as a structure generated by the SoC Builder tool. To access the
structure, load the .mat file which is generated by SoC Builder tool. The file is named
model_name_boardID_aximaster.mat. Loading the file will load the structures generated by the
SoC Builder tool to your workspace.

The structures contain information for vendor IP and for user-specified IP which are specific to your
model and board. The structures are named as follows:

• vdma_frame_buffer – A struct representing a frame buffer.
• perf_mon – A struct representing a performance monitor.
• vtc – A struct representing a video timing controller.
• vdma_hdmi_out – A struct representing a VDMA-based HDMI IP.
• atg – A struct representing an AXI traffic generator.
• DUT_ip – A struct representing a user IP named "DUT".

Note The mat file loads additional structs for IPs, for internal access.

IPCoreName — IP core object type
'TrafficGenerator' | 'PerformanceMonitor' | 'VDMA' | 'DMA' | 'VDMATrigger' | 'VTC' |
'FrameBuffer' | 'HDMI'

IP core object type, specified as one of the values in this table:

Value Description
'TrafficGenerator' SoC Blockset memory traffic generator
'PerformanceMonitor' SoC Blockset performance monitor
'VDMA' Xilinx VDMA IP
'DMA' Analog Devices® DMA controller IP
'VTC' Video timing controller
'VDMATrigger' An IP used to trigger reading frames from the source (mm2s)

VDMA
'FrameBuffer' VDMA-based frame buffer IP
'HDMI' VDMA-based HDMI IP

Data Types: string | character vector

 socIPCore

4-21

Properties
PerfMonMode — Type of performance data to collect
'Profile' (default) | 'Trace'

Type of performance data to collect, specified as 'Profile' or 'Trace'. Specify 'Profile' mode
to collect byte and burst counts for bandwidth and latency plots. 'Trace' mode to collect burst
transaction event data for display as waveforms.

Object Functions
initialize Initialize IP core corresponding to socIPCore object
start Start IP core execution on hardware board

See Also
socAXIMaster

Topics
“Analyze Memory Bandwidth Using Traffic Generators”

Introduced in R2019a

4 Objects

4-22

socAXIMaster
Read and write memory locations on hardware board from MATLAB

Description
The socAXIMaster object communicates with the MATLAB AXI master IP running on a hardware
board. The object uses a JTAG connection to forward read and write commands to the IP and access
slave memory locations on the hardware board. Pass an socAXIMaster object as an argument when
you create an socIPCore object, so that the object can access memory locations within the IP core
on the board.

Creation
Description

axiMasterObj = socAXIMaster(vendor) creates an object that connects to an AXI master IP for
the specified vendor.This connection enables you to access memory locations in an SoC design from
MATLAB.

axiMasterObj = socAXIMaster(hw) creates an object that connects to an AXI master IP on the
specified hardware board.

axiMasterObj = socAXIMaster(___ ,Name,Value) creates an object with additional properties
specified by one or more Name,Value pair arguments. Enclose each property name in quotes.
Specify properties in addition to the input arguments in previous syntaxes.

Input Arguments

vendor — FPGA brand name
'Intel' | 'Xilinx'

FPGA brand name, specified as 'Intel' or 'Xilinx'. The AXI master IP varies depending on the
type of FPGA you have.

hw — Hardware object
socHardwareBoard object

Hardware object, specified as a socHardwareBoard object that represents the connection to the
SoC hardware board.

Properties
JTAGCableType — Type of JTAG cable used for communication with FPGA board (Xilinx
boards only)
'auto' (default) | 'FTDI'

Type of JTAG cable used for communication with the FPGA board (Xilinx boards only), specified as
'auto' or 'FTDI'. This property is most useful when more than one cable is connected to the host
computer.

 socAXIMaster

4-23

When this property is set to 'auto' (default), the object autodetects the JTAG cable type. The object
prioritizes searching for Digilent® cables and uses this process to autodetect the cable type.

1 The socAXIMaster object searches for a Digilent cable. If the object finds:

• Exactly one Digilent cable –– The object uses that cable for communication with the FPGA
board.

• More than one Digilent cable –– The object returns an error. To resolve this error, specify the
desired cable using the JTAGCableName property.

• No Digilent cables –– The object searches for an FTDI cable (see step 2).
2 If no Digilent cable is found, the socAXIMaster object searches for an FTDI cable. If the object

finds:

• Exactly one FTDI cable –– The object uses that cable for communication with the FPGA board.
• More than one FTDI cable –– The object returns an error. To resolve this error, specify the

desired cable using the JTAGCableName property.
• No FTDI cables –– The object returns an error. To resolve this error, connect a Digilent or

FTDI cable.

The cable search in 'auto' mode prioritizes connection using a Digilent cable. If one Digilent and
one FTDI cable are connected to the host computer and this property is set to 'auto', the object
selects the Digilent cable for communication with the FPGA board.

When this property is set to 'FTDI', the object searches for FTDI cables. If the object finds:

• Exactly one FTDI cable –– The object uses that cable for communication with the FPGA board.
• More than one FTDI cable –– The object returns an error. To resolve this error, specify the desired

cable using the JTAGCableName property.
• No FTDI cables –– The object returns an error. To resolve this error, connect a Digilent or FTDI

cable.

For an example, see “Select from Multiple JTAG Cables” on page 4-27.

JTAGCableName — Name of JTAG cable used for communication with FPGA board
'auto' (default) | character vector

Name of JTAG cable user for communication with FPGA board, specified as 'auto' or a character
vector. Specify this property if more than one JTAG cable of the same type are connected to the host
computer. If the host computer has more than one JTAG cable and you do not specify this property,
the object returns an error. The error message contains the names of the available JTAG cables. For
an example, see “Select from Multiple JTAG Cables” on page 4-27.

TckFrequency — JTAG clock frequency
15 (default) | positive integer

JTAG clock frequency, in MHz, specified as a positive integer. For Intel FPGAs the JTAG clock
frequency must be 12 MHz or 24 MHz. For Xilinx FPGAs, the JTAG clock frequency must be 33 MHz
or 66 MHz. The JTAG clock frequency depends on the type of cable and the maximum clock frequency
supported by the FPGA board.

JTAGChainPosition — Position of FPGA in JTAG chain (Xilinx boards only)
1 (default) | positive integer

4 Objects

4-24

Position of FPGA in JTAG chain (Xilinx boards only), specified as a positive integer. Specify this
property value if more than one FPGA or Zynq device is on the JTAG chain.

IRLengthBefore — Sum of instruction register length for all devices before target FPGA
(Xilinx boards only)
0 (default) | nonnegative integer

Sum of instruction register length for all devices before target FPGA (Xilinx boards only), specified as
a nonnegative integer. Specify this property value if more than one FPGA or Zynq device is on the
JTAG chain.

IRLengthAfter — Sum of instruction register length for all devices after target FPGA
(Xilinx boards only)
0 (default) | nonnegative integer

Sum of instruction register length for all devices after target FPGA (Xilinx boards only), specified as a
nonnegative integer. Specify this property value if more than one FPGA or Zynq device is on the JTAG
chain.

Object Functions
readmemory Read data from AXI4 memory-mapped slaves
release Release JTAG cable resource
writememory Write data to AXI4 memory-mapped slaves

Examples

Initialize Memory on SoC Hardware Board from MATLAB

For an example of how to configure and use the AXI master IP in your design, see “Random Access of
External Memory”. Specifically, review the soc_image_rotation_axi_master.m script that
initializes the memory on the device, starts the FPGA logic, and reads back the modified data. This
example shows only the memory initialization step.

Load a .mat file that contains structures derived from the board configuration parameters. This file
was generated by SoC Builder. These structures also describe the IP cores and memory
configuration of the design on the board. Set up a JTAG AXI master connection by creating a
socHardwareBoard and passing it to the socAXIMaster object. The socAXIMaster object
connects with the hardware board and confirms that the IP is present.

load('soc_image_rotation_zc706_aximaster.mat');
hwObj = socHardwareBoard('Xilinx Zynq ZC706 evaluation kit','Connect',false);
AXIMasterObj = socAXIMaster(hwObj);

Initialize the memory contents on the device by loading the figure data and writing it to Region1.
The FPGA logic is designed to read this data, rotate it, and write it into Region2. Clear the contents
of Region2.

load('soc_image_rotation_inputdata.mat');
inputFigure = smallImage;
[x, y] = size(inputFigure);
inputImage = uint32(reshape(inputFigure',1,x*y));

 socAXIMaster

4-25

writememory(AXIMasterObj,memRegions.AXI4MasterMemRegion1,inputImage);
writememory(AXIMasterObj,memRegions.AXI4MasterMemRegion2,uint32(zeros(1,x*y)));

Access Memory on SoC Hardware Board from MATLAB

For this example, you must have a design running on a hardware board connected to the MATLAB
host machine.

Create a MATLAB AXI master object. The object connects with the hardware board and confirms that
the IP is present. You can create the object with a vendor name or an socHardwareBoard object.

mem = socAXIMaster('Xilinx');

Write and read one or more addresses with one command. By default, the functions auto-increment
the address for each word of data. For instance, write ten addresses, then read the data back from a
single location.

writememory(mem,140,[10:19])
rd_d = readmemory(mem,140,1)

rd_d =

 uint32

 10

Now, read the written data from ten locations.

rd_d = readmemory(mem,140,10)

rd_d =

 1×10 uint32 row vector

 10 11 12 13 14 15 16 17 18 19

Set the BurstType property to 'Fixed' to turn off the auto-increment and access the same address
multiple times. For instance, read the written data ten times from the same address.

rd_d = readmemory(mem,140,10,'BurstType','Fixed')

rd_d =

 1×10 uint32 row vector

 10 10 10 10 10 10 10 10 10 10

Write incrementing data ten times to the same address. The final value stored in address 140 is 29.

writememory(mem,140,[20:29],'BurstType','Fixed')
rd_d = readmemory(mem,140,10)

rd_d =

 1×10 uint32 row vector

 29 11 12 13 14 15 16 17 18 19

4 Objects

4-26

Alternatively, specify the address as a hexadecimal string. To cast the read data to a data type other
than uint32, use the OutputDataType property.

writememory(mem,'1c',[0:4:64])
rd_d = readmemory(mem,'1c',16,'OutputDataType',numerictype(0,6,4))

rd_d =

 Columns 1 through 10
 0 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 2.2500
 Columns 11 through 16
 2.5000 2.7500 3.0000 3.2500 3.5000 3.7500

 DataTypeMode: Fixed-point: binary point scaling
 Signedness: Unsigned
 WordLength: 6
 FractionLength: 4

When you are done accessing the board, release the JTAG connection.

release(mem)

Select from Multiple JTAG Cables

When multiple JTAG cables are connected to your host computer, the object prioritizes Digilent cables
over FTDI cables. To use an FTDI cable, specify the JTAG cable type property.

h = socAXIMaster('Xilinx', 'JTAGCableType', 'FTDI')

If two cables of the same type are connected to your host computer, specify the JTAGCableName
property for the board where the JTAG master IP is running. To see the JTAG cable identifiers,
attempt to create an socAXIMaster object, which, in this case, errors and returns a list of the
current JTAG cable names.

h = socAXIMaster('Xilinx')

Error using fpgadebug_mex
Found more than one JTAG cable:
0 (JtagSmt1): #tpt_0001#ptc_0002#210203991642
1 (Arty): #tpt_0001#ptc_0002#210319789795
Please disconnect the extra cable, or specify the cable name as an input argument.
See documentation of FPGA Data Capture or MATLAB as AXI master to learn how to set
the cable name.

To communicate with this Arty board, specify the matching JTAG cable name.

h = socAXIMaster('Xilinx','JTAGCableName','#tpt_0001#ptc_0002#210319789795')

See Also
socIPCore

Topics
“Random Access of External Memory”

 socAXIMaster

4-27

Introduced in R2019a

4 Objects

4-28

socMemoryProfiler
Retrieve and display memory performance data

Description
This object collects and displays two types of memory performance data from an AXI memory
interconnect IP running on your SoC hardware board. You can collect average transaction latency
and counts of bytes and bursts and then plot bandwidth, burst counts, and transaction latency, or
collect detailed memory transaction event data and view the data as waveforms.

Creation

Syntax
profiler = socMemoryProfiler(hw,performanceMonitor)

Description

profiler = socMemoryProfiler(hw,performanceMonitor) creates an object that accesses
the AXI interconnect monitor IP on the board specified by the socHardwareBoard object,
hardware, and uses the IP configuration from the IP core object, performanceMonitor.

Input Arguments

hw — Hardware object
socHardwareBoard object

Hardware object, specified as a socHardwareBoard object that represents the connection to the
SoC hardware board.

performanceMonitor — AXI interconnect monitor IP core object
socIPCore object

AXI interconnect monitor IP core object, specified as an socIPCore object that was created with the
IPCoreName argument set to 'PerformanceMonitor', and then initialized. For example,

apmCoreObj = socIPCore(AXIMasterObj,perf_mon,'PerformanceMonitor','Mode',perfMonMode);
initialize(apmCoreObj);

• AXIMasterObj is an socAXIMaster object.
• perf_mon is a structure generated by the SoC Builder tool.
• perfMonMode is a string equal to either 'Profile' or 'Trace'. 'Profile' mode collects byte

and burst counts for bandwidth and latency plots. 'Trace' mode collects burst transaction event
data for display as waveforms.

 socMemoryProfiler

4-29

Object Functions
collectMemoryStatistics Retrieve performance data from AXI interconnect monitor
plotMemoryStatistics Plot performance data obtained from AXI interconnect monitor

Examples

Configure and Query AXI Interconnect Monitor

The AXI interconnect monitor (AIM) is an IP core that collects performance metrics for an AXI-based
FPGA design. Create an socIPCore object to setup and configure the AIM IP, and use the
socMemoryProfiler object to retrieve and display the data.

For an example of how to configure and query the AIM IP in your design using MATLAB as AXI
Master, see “Analyze Memory Bandwidth Using Traffic Generators”. Specifically, review the
soc_memory_traffic_generator_axi_master.m script that configures and monitors the design
on the device.

The performance monitor can collect two types of data. Choose Profile mode to collect average
transaction latency and counts of bytes and bursts. In this mode, you can launch a performance plot
tool, and then configure the tool to plot bandwidth, burst count, and transaction latency. Choose
Trace mode to collect detailed memory transaction event data and view the data as waveforms.

Mode = 'Profile'; % or 'Trace'

To obtain diagnostic performance metrics from your generated FPGA design, you must set up a JTAG
connection to the device from MATLAB. Load a .mat file that contains structures derived from the
board configuration parameters. This file was generated by the SoC Builder tool. These structures
describe the memory interconnect and masters configuration such as buffer sizes and addresses. Use
the socHardwareBoard object to set up the JTAG connection.

load('soc_memory_traffic_generator_zc706_aximaster.mat');
hwObj = socHardwareBoard('Xilinx Zynq ZC706 evaluation kit','Connect',false);
AXIMasterObj = socAXIMaster(hwObj);

Configure the AIM. The socIPCore object provides a function that performs this initialization. Then,
create an socMemoryProfiler object to gather the metrics.

apmCoreObj = socIPCore(AXIMasterObj,perf_mon,'PerformanceMonitor','Mode',Mode);
initialize(apmCoreObj);
profilerObj = socMemoryProfiler(hwObj,apmCoreObj);

Retrieve performance metrics or signal data from a design running on the FPGA by using the
socMemoryProfiler object functions.

For 'Profile' mode, call the collectMemoryStatistics function in a loop.

NumRuns = 100;
for n = 1:NumRuns
 collectMemoryStatistics(profilerObj);
end

JTAG design setup time is long relative to FPGA transaction times, and if you have a small number of
transactions in your design, they might have already completed by the time you query the monitor. In

4 Objects

4-30

this case, the bandwidth plot shows only one sample, and the throughput calculation is not accurate.
If this situation occurs, increase the total number of transactions the design executes.

For 'Trace' mode, call the collectMemoryStatistics function once. This function stops the IP
from writing transactions into the FIFO in the AXI interconnect monitor IP, although the transactions
continue on the interconnect. Set the size of the transaction FIFO, Trace capture depth, in the
configuration parameters of the model, under Hardware Implementation > Target hardware
resources > FPGA design (debug).

collectMemoryStatistics(profilerObj);

Visualize the performance data by using the plotMemoryStatistics function. In 'Profile'
mode, this function launches a performance plot tool, and you can configure the tool to plot
bandwidth, burst count, and average transaction latency. In 'Trace' mode, this function opens the
Logic Analyzer tool to view burst transaction event data.

plotMemoryStatistics(profilerObj);

See Also
“Memory Performance Information from FPGA Execution”

Topics
“Analyze Memory Bandwidth Using Traffic Generators”

Introduced in R2019a

 socMemoryProfiler

4-31

Tools

5

Logic Analyzer
Visualize, measure, and analyze transitions and states over time

Description
The Logic Analyzer is a tool for visualizing and inspecting signals and states in your Simulink model.
Using the Logic Analyzer, you can:

• Debug and analyze models
• Trace and correlate many signals simultaneously
• Detect and analyze timing violations
• Trace system execution
• Detect signal changes using triggers

For keyboard shortcuts, click More.

Keyboard Shortcuts

Actions Description Applicable When
Ctrl+X Cut Wave is selected
Ctrl+C Copy Wave is selected
Ctrl+V Paste Wave is selected
Delete Delete Wave is selected
Ctrl+- Zoom out Always
Shift+Ctrl+- Zoom out around active cursor Always
Ctrl++ Zoom in Always
Shift+Ctrl++ Zoom out around active cursor Always
Shift+Ctrl+C Move display to active cursor When cursor is not in the

display range
Space Zoom out full Always
Tab, Right Arrow Next transition Digital format wave is selected
Shift+Tab, Left Arrow Previous transition Digital format wave is selected
Ctrl+A Select all waves Always
Up Arrow Select wave above selected Wave is selected
Down Arrow Select wave below selection Wave is selected
Ctrl+Up Arrow Move selected waves up Wave is selected
Ctrl+Down Arrow Move selected waves down Wave is selected
Escape Unselect all signals Wave is selected
Page Up Scroll up Always
Page Down Scroll down Always

5 Tools

5-2

Open the Logic Analyzer App
On the Simulink toolstrip Simulation tab, click the Logic Analyzer app button. If the button is not
displayed, expand the review results app gallery. Your most recent choice for data visualization is
saved across Simulink sessions.

To visualize referenced models, you must open the Logic Analyzer from the referenced model. You
should see the name of the referenced model in the Logic Analyzer toolbar.

 Logic Analyzer

5-3

Examples
Select Signals to Analyze

The Logic Analyzer supports several methods for selecting data to visualize.

• Select a signal in your model. When you select a signal, an ellipsis appears above the signal line.
Hover over the ellipsis to view options and then select the Enable Data Logging option.

• Right-click a signal in your model to open an options dialog box. Select the Log Selected Signals
option.

• Use any method to select multiple signal lines in your model. For example, use Shift+click to
select multiple lines individually or CTRL+A to select all lines at once. Then, on the Signal tab,
select the Log Signals button.

5 Tools

5-4

To visualize data in the Logic Analyzer, you must enable signal logging for the model. (Logging is on
by default.) To enable signal logging, open Model Settings from the toolstrip, navigate to the Data
Import/Export pane, and select Signal logging.

When you open the Logic Analyzer, all signals marked for logging are listed. You can add and delete
waves from your Logic Analyzer while it is open. Adding and deleting signals does not disable
logging, only removes the signal from the Logic Analyzer.

Modify Global Settings

Open the Logic Analyzer and select Settings from the toolstrip. A global settings dialog box opens.
Any setting you change for an individual signal supersedes the global setting. The Logic Analyzer
saves any setting changes with the model (Simulink) or System object™ (MATLAB).

Set the display Radix of your signals as one of the following:

• Hexadecimal — Displays values as symbols from zero to nine and A to F
• Octal — Displays values as numbers from zero to seven
• Binary — Displays values as zeros and ones
• Signed decimal — Displays the signed, stored integer value
• Unsigned decimal — Displays the stored integer value

Set the display Format as one of the following:

• Automatic — Displays floating point signals in Analog format and integer and fixed-point signals
in Digital format. Boolean signals are displayed as zero or one.

 Logic Analyzer

5-5

• Analog — Displays values as an analog plot
• Digital — Displays values as digital transitions

Set the display Time Units to one of the following:

• Automatic — Uses a time scale appropriate to the time range shown in the current plot
• seconds
• milliseconds
• microseconds
• nanoseconds
• picoseconds
• femtoseconds

Set the Boolean Highlighting to one of the following:

• None
• Rows — Adds a highlighted background for the entire Boolean signal row.

Select Highlight boolean values to add highlighting to Boolean signals.
• Gradient— Adds color highlighting to Boolean signals based on value. If the signal value is true,

the highlight fades out below. If the signal value is false, the signal fades out above. With this
option, you can visually deduce the value of the signal.

Inspect the graphic for an explanation of the global settings: Wave Color, Axes Color, Height,
Font Size, and Spacing. Font Size applies only to the text within the axes.

5 Tools

5-6

By default, when your simulation stops, the Logic Analyzer shows all the data for the simulation time
on one screen. If you do not want this behavior, clear Fit to view at Stop. This option is disabled for
long simulation times.

To display the short names of waves without path information, select Display short wave names.

You can expand fixed-point and integer signals and view individual bits. The Display Least
Significant bit first option enables you to reverse the order of the displayed bits.

If you stream logged bus signals to the Logic Analyzer, you can display the names of the signals inside
the bus using the Display bus element names option. To show bus element names:

1 Add the bus signal for logging.
2 In the Logic Analyzer settings, select the Display bus element names check box.
3 Run the simulation.

When you expand the bus signals, you will see the bus signal names.

Some special situations:

• If the signal has no name, the Logic Analyzer shows the block name instead.
• If the bus is a bus object, the Logic Analyzer shows the bus element names specified in the Bus

Object Editor.
• If one of the bus elements contains an array, each element of the array is appended with the

element index.

 Logic Analyzer

5-7

• If a bus element contains an array with complex elements, the real and complex values (i) are
split.

• Bus signals passed through a Gain block are labeled Gain(1), Gain(2),...Gain(n).
• If the bus contains an array of buses, the Logic Analyzer prepends the element name with the bus

array index.

Modify Individual Wave Settings

Open the Logic Analyzer and select a wave by double-clicking the wave name. Then from the Wave
tab, set parameters specific to the individual wave you selected. Any setting made on individual
signals supersedes the global setting. To return individual wave parameters to the global settings,
click Reset.

5 Tools

5-8

Delete and Restore Waves

1 Open the Logic Analyzer and select a wave by clicking the wave name.

2 From the Logic Analyzer toolstrip, click . The wave is removed from the Logic Analyzer.
3 To restore the wave, from the Logic Analyzer toolstrip, click .

A divider named Restored Waves is added to the bottom of your channels, with all deleted
waves placed below it.

 Logic Analyzer

5-9

Add Trigger

The Logic Analyzer trigger allows you to find data points based on certain conditions. This feature is
useful for debugging or testing when you need to find a specific signal change.

1 Open the Logic Analyzer and select the Trigger tab.

2 To attach a signal to the trigger, select Attach Signals, then select the signal you want to trigger
on. You can attach up to 20 signals to the trigger. Each signal can have only one triggering
condition.

3 By default, the trigger looks for rising edges in the attached signals. You can set the trigger to
look for rising or falling edges, bit sequences, or a comparison value. To change the triggering
conditions, select Set Conditions.

If you add multiple signals to the trigger, control the trigger logic using the Operator option:

• AND - match all conditions.
• OR - match any condition.

4 To control how many samples you see before triggering, set the Display Samples option. For
example, if you set this option to 500, the Logic Analyzer tries to give you 500 samples before
the trigger. Depending on the simulation, the Logic Analyzer may show more or fewer than 500
samples before the trigger. However, if the trigger is found before the 500th sample, the Logic
Analyzer still shows the trigger.

5 Control the trigger mode using Display Mode.

• Once - The Logic Analyzer marks only the first location matching the trigger conditions and
stops showing updates to the Logic Analyzer. If you want to reset the trigger, select Rearm
Trigger. Relative to the current simulation time, the Logic Analyzer shows the next
matching trigger event.

• Auto - The Logic Analyzer marks every location matching the trigger conditions.

5 Tools

5-10

6 Before running the simulation, select Enable Trigger. A blue cursor appears as time 0. Then,
run the simulation. When a trigger is found, the Logic Analyzer marks the location with a locked
blue cursor.

View Bit-Expanded Wave and Reverse Display Order of Bits

The Logic Analyzer enables you to bit-expand fixed-point and integer waves.

1 In the Logic Analyzer, click the arrow next to a fixed-point or integer wave to view the bits.

The least significant bit and the most significant bit are marked with lsb and msb next to the
wave names.

 Logic Analyzer

5-11

2 Click Settings, and then select Display Least Significant bit first to reverse the order of the
displayed bits.

5 Tools

5-12

Limitations
Logging Settings

• If you enable the configuration parameter Log Dataset data to file, you cannot stream logged
data to the Logic Analyzer.

• Signals marked for logging using Simulink.sdi.markSignalForStreaming or visualized with
a Dashboard Scope do not appear on the Logic Analyzer.

• You cannot visualize Data Store Memory block signals in the Logic Analyzer if you set the Log
data store data parameter to on.

Input Signal Limitations

• Signals marked for logging for the Logic Analyzer must have fewer than 8000 samples per
simulation step.

• The Logic Analyzer does not support frame-based processing.
• For 64-bit integers and fixed-point numbers greater than 53 bits, if the numbers are greater than

the maximum value of double precision, the transitions between numbers might not display
correctly.

• You may see performance degradation in the Logic Analyzer for large matrices (greater than 500
elements) and buses with more than 1000 signals.

• The Logic Analyzer does not support Stateflow data output.

 Logic Analyzer

5-13

Graphical Settings

• While the simulation is running, you cannot zoom, pan, or modify the trigger.
• To visualize constant signals, in the settings, you must set the Format to Digital. Constants

marked for logging are visualized as a continuous transition.

Supported Simulation Modes

Mode Suppor
ted

Notes and Limitations

Normal Yes
Accelerator Yes You cannot use the Logic Analyzer to visualize signals in Model blocks

with Simulation mode set to Accelerator.
Rapid
Accelerator

Yes Data is not available in the Logic Analyzer during simulation.

If you simulate a model with the simulation mode set to rapid accelerator,
after simulation the following signals cannot be visualized in the Logic
Analyzer:

• Multi-instance model reference signals
• Nonvirtual bus signals

Processor-in-
the-loop (PIL)

No

Software-in-the-
loop (SIL)

No

External No

For more information about these modes, see “How Acceleration Modes Work”.

See Also
Objects

Topics
“Programmable FIR Filter for FPGA” (HDL Coder)
“Packet-Based ADS-B Transceiver”
“Log Simulation Output for States and Data” (Stateflow)
“View Stateflow States in the Logic Analyzer” (Stateflow)

Introduced in R2016b

5 Tools

5-14

Memory Mapper
Configure memory map for SoC application

Description
View and edit memory regions of an SoC application. Edit device base addresses and offsets for
memory-mapped devices.

Using the Memory Mapper tool, you can:

• View and edit base addresses, offsets, and memory locations of various channels and memory-
mapped components in your design.

• Check the memory map of your model for any conflicts between different memory channel
configurations.

• Reset the memory map to its default settings.
• Reconcile an edited map to match model settings.

 Memory Mapper

5-15

Open the Memory Mapper
• In the Configuration Parameters dialog box, select Hardware Implementation from the left

pane. Under Target hardware resources, select FPGA design (top-level) and click View/Edit
Memory Map.

• In the SoC Builder tool, in the Review Memory Map section, click View/Edit.

Examples
Reconcile Model with Memory Map

Consider a model with three masters (represented by Memory Traffic Generator blocks), connected to
a Memory Controller block.

5 Tools

5-16

To open the Memory Mapper tool, first open the Configuration Parameters dialog box, and then
select Hardware Implementation from the left pane. Under Target hardware resources, select
FPGA design (top-level) and click View/Edit Memory Map.

 Memory Mapper

5-17

The Memory Mapper lists the three masters in the design. Edit their base addresses as per your
requirements. Add another channel to your model.

5 Tools

5-18

The model consists of four memory channels, while the Memory Map section shows only three. To
resolve this conflict, click Reconcile Map. This adds another line, which represents the added
channel, to the memory map table.

 Memory Mapper

5-19

Reset Map

Click Reset Map to create a new, autogenerated map. The base addresses of the channels are reset
to a default value.

5 Tools

5-20

Parameters
Hardware Board — View selected hardware board
selected hardware board

This property is read-only.

This Parameter shows the targeted hardware board. Click the link to open the configuration
parameters on the Hardware Implementation pane, and change any of the hardware
configurations. To learn more about board configuration parameters, see Hardware
Implementation Pane Overview.

Controller

Size (MB) — External memory size in megabytes
positive integer

 Memory Mapper

5-21

This property is read-only.

This parameter shows the size of the external memory available for the selected hardware board in
megabytes. This value is derived from the hardware board selected in the configuration parameters.

Base Address — Base address of memory
0x00000000 (default) | 32-bit hexadecimal address

This property is read-only.

This parameter shows the base address of the external memory. This value is a 32-bit hexadecimal
value.

Memory Map

Check Map — Check memory map
button

Check that the memory map has no overlapping regions or registers, and that memory addresses are
properly aligned.

Reset Map — Reset memory map
button

Reset the memory map to its initial values.

Reconcile Map — Reconcile memory map with existing model
button

Reconcile the memory map with the existing model. After adding or deleting a channel or a memory-
mapped register to your model, click this button to synchronize between the model and the memory
map. To verify that the reconciled memory map is valid, click Check Map after reconciling.

Note Clicking Reconcile Map matches the memory map to the model but does not reset the base
address values of the memory areas.

See Also
Memory Channel | Memory Controller | SoC Builder

Topics
“Random Access of External Memory”

Introduced in R2019a

5 Tools

5-22

Task Mapping
Map tasks in the SoC to interrupt service routines on the hardware board

Description
View and edit the map of tasks in the SoC to interrupt service routines (ISRs) on the hardware board.

Using the Task Mapper tool, you can:

• View and edit the assignment of tasks to MCU interrupts.
• Check the task to interrupt map of your model for any conflicts between tasks.
• Automatically map tasks to ISRs.

Open the Task Mapping
• In the Configuration Parameters dialog box, select Hardware Implementation from the left

pane. Under Hardware board settings > Design mapping, click View/Edit Task Map.
• In the SoC Builder tool, in the Review Memory and Interrupt Map section, click View/Edit

Task Map.

 Task Mapping

5-23

Parameters
Task Mapping

Task Name — Name of the tasks from Task Managers
task name

This property is read-only.

This parameter is the name of the tasks assigned in Task Manager for the current processor.

Event Source — Base address of memory
Internal (default) | Undefined | Interrupt name

This property is read-only.

This parameter shows the tag name of the interrupt service routine (ISR). This value is a drop down
list for that given hardware.

Task Mapping

Auto Map — Automatically map tasks to ISRs
button

Automatically map tasks in the current model to the most appropriate interrupt service routines
(ISRs) available for the selected hardware board.

Check Map — Check task to ISR map
button

Check that each task maps to a unique interrupt service routine (ISR) source. Two tasks cannot be
mapped to the same ISR source.

See Also
Task Manager

Introduced in R2020b

5 Tools

5-24

Peripheral Configuration
Map peripherals in the SoC model to peripheral registers in the MCU

Description
View and edit the map of peripherals in the SoC model to the hardware peripherals.

Using the Peripheral Configuration tool, you can:

• View and edit the assignment of peripherals to MCU peripheral registers.
• Check the peripheral to register map of your model for any conflicts between peripherals.

 Peripheral Configuration

5-25

Open the Peripheral Configuration
• In the Configuration Parameters dialog box, select Hardware Implementation from the left

pane. Under Hardware board settings > Design mapping, click View/Edit Peripheral Map.
• In the SoC Builder tool, in the Review Memory and Interrupt Map section, click View/Edit

Peripheral Map.

Parameters
ADC

Simulink block — Select ADC Read block in model
reference-model-name / block-name

Select an ADC Read block from the model to apply the code generation parameter configurations.
Example: RefModel/ADC Read

View block — View the ADC Read block in model
button

Open the ADC Read block selected in the Simulink block parameter in the model.

Module — Hardware ADC Module
A (default) | B | C | D

Select the ADC module A through D on the hardware board.

Start of conversion — Start of conversion trigger
SOC0 (default) | SOC0 | ... | SOC15

Identify the start-of-conversion trigger by number.

Resolution — Resolution of digital conversion
12-bit (Single-ended input) (default) | 16-bit (Differential inputs)

Select the resolution of the digital conversion output.

Conversion channel — Input channel to apply ADC
Internal (default) | Undefined | Interrupt name

Select the input channel to which this ADC conversion applies.

SOCx Acqusition window (cycles) — Length of ADC acquisition period
positive scalar integer

Define the length of the acquisition period in ADC clock cycles. The value of this parameter depends
on the SYSCLK and the minimum ADC sample time.

SOCx Trigger source — SoC trigger source
Software | Timer x TINTxn | GPIO ADCEXTSOC | ePWMx ADCSOCA

Select the event source that triggers the start of the conversion.

5 Tools

5-26

ADCINT will trigger SOCx — Use ADCINT interrupt to trigger start of conversion
No ADCINT (default) | ADCINT1 | ADCINT2

At the end of conversion, use the ADCINT1 or ADCINT2 interrupt to trigger a start of conversion. This
loop creates a continuous sequence of conversions. The default selection, No ADCINT disables this
parameter. To set the interrupt, select the Post interrupt at EOC trigger option, and choose the
appropriate interrupt.

Enable interrupt at EOC — Enable post interrupts when the ADC triggers end of
conversion pulses
false (default) | true

Enable post interrupts when the ADC triggers EOC pulses. When you select this option, the dialog
box displays the Interrupt selection and Interrupt continuous mode options.

Interrupt selection — ADC interrupt selection
ADCINT1 (default) | ADCINT2 | ADCINT3 | ADCINT4

Select which ADCINT# interrupt the ADC posts to after triggering an EOC pulse.

Interrupt continuous mode — Generate new EOC signal overriding previous interrupt
flag status
false (default) | true

When the ADC generates an end of conversion (EOC) signal, generate an ADCINT# interrupt, whether
the previous interrupt flag has been acknowledged or not.

PWM

Simulink block — Select PWM Write block in model
reference-model-name / block-name

Select an PWM Write block from the model to apply the code generation parameter configurations.
Example: RefModel/PWM Write

View block — View the PWM Read block in model
button

Open the PWM Write block selected in the Simulink block parameter in the model.

PWM Module — Indicates which ePWM module to use
ePWM1 (default) | ePWM2 | ... | ePWMx

Select the appropriate ePWM module, ePWMx, where x is a positive integer.

High speed clock divider — High speed time base clock prescaler divider HSPCLKDIV
1 (default) | 2 | 4 | 6 | 8 | 10 | 12 | 14

Set the high speed time base clock prescaler divider, HSPCLKDIV.

Timerbase clock divider — Time base clock TBCLK prescaler divider corresponding to
CLKDIV
1 (default) | 2 | 4 | 8 | 16 | 32 | 64 | 128

Use the Time base clock, TBCLK, prescaler divider, CLKDIV, and the high speed time base clock,
HSPCLKDIV, prescaler divider, HSPCLKDIV, to configure the Time-base clock speed, TBCLK, for the

 Peripheral Configuration

5-27

ePWM module. Calculate TBCLK using this equation: TBCLK = PWM clock/(HSPCLKDIV *
CLKDIV).

For example, the default values of both CLKDIV and HSPCLKDIV are 1, and the default frequency of
PWM clock is 200 MHz, so: TBCLK in Hz = 200 MHz/(1 * 1) = 200 MHz TBCLK in seconds = 1/TBCLK
in Hz = 1/200 MHz = 0.005 μs.

Period (clock cycles) — Period of ePWM counter
1 (default) | 2 | 4 | 8 | 16 | 32 | 64 | 128

Set the period of the ePWM counter waveform.

The timer period is in clock cycles:

Count Mode Calculation Example
Up or down The value entered in clock

cycles is used to calculate time-
base period, TBPRD, for the
ePWM timer register. The period
of the ePWM timer is TCTR =
(TBPRD + 1) * TBCLK, where
TCTR is the timer period in
seconds, and TBCLK is the time-
base clock.

For ePWM clock, EPWMCLK,
frequency = 200 MHz, and
TBCLK = 5 ns. EPWMCLK will be
equal to SYSCLKOUT or
SYSCLKOUT/2 depending on the
ePWM clock divider,
EPWMCLKDIV, parameter
setting. When the timer period
is entered in clock cycles TBPRD
= 9999, and the ePWM timer
period is calculated as TCTR =
50 µs. For the default action
settings on the ePWMx tab, the
ePWM period = 50 µs.

Up-down The value entered in clock
cycles is used to calculate the
time-base period, TBPRD, for the
ePWM timer register. The period
of the ePWM timer is TCTR = 2
* TBPRD * TBCLK, where
TCTR is the timer period in
seconds and TBCLK is the time-
base clock.

For EPWMCLK frequency = 200
MHz and TBCLK = 5 ns. When
the timer period is entered in
clock cycles, TBPRD = 10000,
and the ePWM timer period is
calculated as TCTR = 100 µs.
For the default action settings
on the ePWMx tab, the ePWM
period = 100 µs.

The initial duty cycle of the waveform from the time the PWM peripheral starts operation until the
ePWM input port receives a new value for the duty cycle is Timer period / 2.

Initialize CMPx count (clock cycles) — Initialize the CMPx count
0 (default) | positive integer

Set the initial count value of the comparator in clock cycles.

Enable phase offset — Enable the timer phase offset
false (default) | true

Enables to provide a timer phase offset value.

5 Tools

5-28

Timer phase offset — Timer phase offset
0 (default) | integer between 0 and 65535

The specified offset value is loaded in the time base counter on a synchronization event. Enter the
phase offset value, TBPHS, in TBCLK cycles from 0 to 65535.

Count mode — Indicates counting mode of ePWM counter
Up-Down (default) | Down | Up

Specify the counting mode of the PWM internal counter. This figure shows three counting waveforms.

 Peripheral Configuration

5-29

5 Tools

5-30

Action on counter=zero — Behavior of action qualifier (AQ) submodule at zero count
Do nothing (default) | Clear | Set | Toggle

This group determines the behavior of the action qualifier (AQ) submodule. The AQ module
determines which events are converted into one of the various action types, producing the required
switched waveforms of the ePWMA circuit. The ePWMB always generates a complement signal of
ePWMA.

Action on counter=period — Behavior of action qualifier (AQ) submodule at period count
Do nothing (default) | Clear | Set | Toggle

This group determines the behavior of the Action Qualifier (AQ) submodule. The AQ module
determines which events are converted into one of the various action types, producing the required
switched waveforms of the ePWMA circuit. The ePWMB always generates a complement signal of
ePWMA.

Action on counter=CMPx on direction count — Behavior of Action Qualifier (AQ)
submodule for the comparator (CMP) on for the given direction count
Clear (default) | Do nothing | Set | Toggle

This group determines the behavior of the action qualifier (AQ) submodule. The AQ module
determines which events are converted into one of the various action types, producing the required
switched waveforms of the ePWMA circuit. The ePWMB always generates a complement signal of
ePWMA.

Enable shadow mode — Enable the shadow mode
Disable (default) | Enable

When shadow mode is not enabled, the CMPA register refreshes immediately. Provide different reload
mode for CMPA register.

Reload CMPx register — Time at which the counter period is reset
Counter equals to zero (CTR=Zero) (default) | Counter equals to period (CTR=PRD) |
Counter equals to Zero or period (CTR=Zero or CTR=PRD) | Freeze

The time when the counter period resets based on the following condition:

• Counter equals to zero (CTR=Zero) – Refreshes the counter period when the value of the
counter is 0.

• Counter equals to period (CTR=PRD) – Refreshes the counter period when the value of the
counter is period.

• Counter equals to Zero or period (CTR=Zero or CTR=PRD) – Refreshes the counter
period when the value of the counter is 0 or period.

• Freeze – Refreshes the counter period when the value of the counter is freeze.

ADC Start of conversion for ePWM module — Trigger condition for an ADC start of the
conversion event
Counter equals to zero (CTR=Zero) (default) | Counter equals to period (CTR=PRD) |
Counter equals to Zero or period (CTR=Zero or CTR=PRD) | Disable | Counter is
direction and equal to CMPx

This parameter specifies the counter match condition that triggers an ADC start of the conversion
event. The choices are:

 Peripheral Configuration

5-31

• Counter equals to zero (CTR=Zero) – Triggers an ADC start of the conversion event when
the ePWM counter reaches 0.

• Counter equals to period (CTR=PRD) – Triggers an ADC start of the conversion event when
the ePWM counter reaches the period value.

• Counter equals to Zero or period (CTR=Zero or CTR=PRD) – Triggers an ADC start of
the conversion event when the time base counter, TBCTR, reaches zero or when the time base
counter reaches the period, TBCTR = TBPRD.

• Disable – Disable ADC start of conversion event.
• Counter is direction and equal to CMPx – Triggers an ADC start of the conversion event

when the counter equals the specified comparator and the counter direction is either
incrementing or decrementing.

ePWM interrupt — Generate ISR for ePWM
Disable (default) | Counter equals to zero (CTR=Zero) | Counter equals to period
(CTR=PRD) | Counter equals to Zero or period (CTR=Zero or CTR=PRD) | Counter is
direction and equal to CMPx

This parameter registers that an interrupt occurs for the specified event and generates interrupt
service routine (ISR) code to be used by the Task Manager. The choices are:

• Counter equals to zero (CTR=Zero) – Generates an ISR for when the ePWM counter
reaches 0.

• Counter equals to period (CTR=PRD) – Generates an ISR for when the ePWM counter
reaches the period value.

• Counter equals to Zero or period (CTR=Zero or CTR=PRD) – Generates an ISR for
when the time base counter, TBCTR, reaches zero or when the time base counter reaches the
period, TBCTR = TBPRD.

• Disable – Disable ISR generation.
• Counter is direction and equal to CMPx – Generates an ISR for when the counter equals

the specified comparator and the counter direction is either incrementing or decrementing.

Dead band (cycles) — Enables the phase offset
0 (default) | integer between 0 and 65535

This parameter specifies the deadband delay for rising edge and falling edge in time-base clock
cycles.

Video Capture

Simulink block — Video Capture block in model
model/block name

Select the Video Capture block in the processor model. You can use the View block button to open
and highlight the block in the model.

Device name — VLS4 device mapping
/dev/video0 (default) | hardware path of video device

This parameter specifies the VLS4 video device to use in the generated code as a Linux hardware
path.

5 Tools

5-32

Video Display

Simulink block — Video Display block in model
model/block name

Select the Video Display block in the processor model. You can use the View block button to open
and highlight the block in the model.

Display title — Title of video display
My Display (default) | string

This parameter specifies the title of the video viewer shown on the screen of a connected monitor.

Audio Capture

Simulink block — Audio Capture block in model
model/block name

Select the Audio Capture block in the processor model. You can use the View block button to open
and highlight the block in the model.

Device name — ALSA device mapping
hw:2,0 (default) | hw:X,Y

This parameter specifies the ALSA hardware card, X, and device, Y, mapping on the embedded Linux
device.

Audio sampling frequency — Sampling frequency of audio device
44100 (default) | positive scalar integer

This parameter specifies the audio sampling frequency of the device managed by the ALSA driver.
The selected value must be supported by the embedded Linux peripheral device.

Audio Playback

Simulink block — Audio Playback block in model
model/block name

Select the Audio Playback block in the processor model. You can use the View block button to open
and highlight the block in the model.

Device name — ALSA device mapping
hw:2,0 (default) | hw:X,Y

This parameter specifies the ALSA hardware card, X, and device, Y, mapping on the embedded Linux
device.

Audio sampling frequency — Sampling frequency of audio device
44100 (default) | positive scalar integer

This parameter specifies the audio sampling frequency of the device managed by the ALSA driver.
The selected value must be supported by the peripheral device and the ALSA driver on your
embedded Linux device.

See Also
ADC Read | Audio Capture | Audio Playback | PWM Write | Video Capture | Video Display

 Peripheral Configuration

5-33

Introduced in R2020b

5 Tools

5-34

SoC Builder
Build, load, and execute SoC model on SoC, FPGA, and MCU boards

Description
The SoC Builder tool steps through the various stages for building and executing an SoC model on
an SOC, FPGA, or MCU board.

Using this tool, you can:

• Review the model information provided to the tool.
• Review the memory map and edit it if needed.
• Configure the peripheral register settings.
• Map model tasks to interrupt service routines.
• Set up a folder to store all generated files.
• Choose between different build actions.
• Validate that the model has all required components for generating a programming file.
• Build the model using Xilinx Vivado, Intel Quartus, Texas Instruments Code Composer Studio™

tool families.
• Configure the Ethernet connectivity.
• Load the programming file to your FPGA board.
• Run the application.

 SoC Builder

5-35

Open the SoC Builder
• Simulink Toolstrip: On the System on Chip tab, click Configure, Build & Deploy.
• Simulink Toolstrip: click the System on Chip tab, and then press Ctrl+B.
• MATLAB command prompt: Enter socBuilder('modelname').

Note If the System on Chip tab is not visible, on the Apps tab, under Setup to Run on Hardware
click the System on Chip (SoC) app icon.

Examples
• “Generate SoC Design”

5 Tools

5-36

Programmatic Use
socBuilder('modelname') opens SoC Builder and loads the specified model into the tool.

See Also
Memory Mapper | Peripheral Map | Task Mapping

Topics
“Generate SoC Design”

Introduced in R2019a

 SoC Builder

5-37

	Blocks
	SoC Bus Creator
	SoC Bus Selector
	Stream FIFO
	Video Stream FIFO
	Video Stream Connector
	Stream Connector
	DIP Switch
	I2C Master
	LED
	Push Button
	AXI4 Master Sink
	AXI4 Master Source
	Stream Data Sink
	Stream Data Source
	Video Test Sink
	Video Test Source
	UDP Read (HOST)
	UDP Write (HOST)
	Interrupt Channel
	IP Core Register Read
	Memory Channel
	Memory Controller
	Memory Traffic Generator
	Register Channel
	ADC Interface
	PWM Interface
	Audio Capture Interface
	Audio Playback Interface
	Video Capture Interface
	Video Display Interface
	Interprocess Data Channel
	Interprocess Data Read
	Interprocess Data Write
	ADC Read
	PWM Write
	Register Read
	Register Write
	Stream Read
	Stream Write
	TCP Read
	TCP Write
	UDP Read
	UDP Write
	Audio Capture
	Audio Playback
	Video Capture
	Video Display
	Task Manager
	Proxy Task
	Event Source
	IO Data Sink
	IO Data Source
	Testbench Task

	Configuration Parameters
	Hardware Implementation Pane
	Hardware Implementation Pane Overview
	Hardware board settings
	Design Mapping
	Task profiling in simulation
	Task profiling on processor
	Operating system/scheduler
	Task and memory simulation
	Board Parameters
	Processor
	Board Options
	Clocking
	External Mode
	FPGA design (top-level)
	FPGA design (mem controllers)
	FPGA design (mem channels)
	FPGA design (debug)

	Hardware Board Settings
	Processing Unit

	Design Mapping
	View/Edit Task Map
	View/Edit Peripheral Map

	Task Profiling in Simulation
	Show in SDI
	Save to file
	Overwrite file

	Task Profiling on Processor
	Show in SDI
	Save to file
	Overwrite file
	Instrumentation
	Profiling duration

	Kernel latency
	Settings

	Task and Memory Simulation
	Set seed for simulating task duration and memory access
	Seed Value
	Cache input data at task start

	Processor
	Number of cores

	Clocking
	CPU Clock (MHz)

	Build Action
	Settings

	External Mode
	Communication Interface
	Run external mode in a background thread
	Port
	Verbose

	FPGA design (top-level)
	View/Edit Memory Map
	Include a JTAG master for host-based interaction
	Include processing system
	Interrupt latency (s)
	Register configuration clock frequency (MHz)
	IP core clock frequency (MHz)

	FPGA design (mem controllers)
	Controller clock frequency (MHz)
	Controller data width (bits)
	Bandwidth derating (%)
	First write transfer latency (clocks)
	Last write transfer latency (clocks)
	First read transfer latency (clocks)
	Last read transfer latency (clocks)

	FPGA design (mem channels)
	Interconnect clock frequency (MHz)
	Interconnect data width (bits)
	Interconnect FIFO depth (num bursts)
	Interconnect almost-full depth

	FPGA design (debug)
	Memory channel diagnostic level
	Include AXI interconnect monitor
	Trace capture depth

	Functions
	getData
	setup
	addSource
	removeSource
	record
	isRecording
	save
	socTaskTimes
	soclib
	collectMemoryStatistics
	plotMemoryStatistics
	initialize
	start
	readmemory
	writememory
	release
	socFunctionAnalyzer
	socModelAnalyzer
	socExportReferenceDesign
	socAlgorithmAnalyzerReport

	Objects
	soc.iosource
	socHardwareBoard
	DataRecorder
	socFileReader
	socIPCore
	socAXIMaster
	socMemoryProfiler

	Tools
	Logic Analyzer
	Memory Mapper
	Task Mapping
	Peripheral Configuration
	SoC Builder

